基于点云配准的室内移动机器人6自由度位姿估计

(整期优先)网络出版时间:2013-04-14
/ 1
针对移动机器人在室内环境下难以获取GPS定位信息,仅靠自身惯导不能得到精确位姿的问题,提出了一种基于RGB-D传感器获取三维环境点云,对连续点云提取特征并进行配准的移动机器人6自由度位姿估计方法.首先通过RGB-D传感器获取环境深度图像,根据特征提取算法提取点云特征;然后以特征点为配准点,运用随机一致性采样(RANdomSAmpleConsensus,RANSAC)算法对点云进行初配准,剔除部分错误匹配点,获得初始变换矩阵;最后采用改进的迭代最近点(IterativeClosetPoint,ICP)算法进行精配准,获得点云间的最终变换矩阵,实现位姿估计.实验结果表明:该方法有效地提高了大规模点云配准效率,得到了较精确的位姿估计信息.