南京江北新区生物医药公共服务平台有限公司
摘要:目的建立了土壤样品中四环素类、喹诺酮类、磺胺类及大环内酯类四类共16种抗生素药物多残留的液/质联用检测方法。方法用Na2EDTA-Mellvaine缓冲溶液及有机混合溶剂萃取样品中16种抗生素,然后经HLB柱提取,以 C18色谱柱为分离柱,在正离子模式下以电喷雾电离串联质谱仪进行测定。结果16种抗生素在2~ 200 ng/ml范围内线性良好(r在0.995~ 0.999之间),方法的检出限为0.05~ 2 μg/kg,定量限为0.15~ 6 μg/kg,在50 、100、150 μg/kg 3个浓度水平加样回收率在81.1%~ 102%之间;相对标准偏差RSD%为1.91%~5.77%。结论 本方法简便、快速、准确,各项技术指标满足国内外法规的要求,可用于土壤样品中四环素类、喹诺酮类、磺胺类及大环内酯类抗生素残留的检测分析。
关键词:抗生素;液相色谱-串联质谱法;土壤
自20世纪40年代青霉素应用于临床以来,抗生素的种类已发展至几千种,在临床上常用的亦有几百种,抗生素已是世界上使用最广泛的药物之一。由于被大量而频繁地使用, 以及自身的水溶性、稳定性、难挥发等特点,导致抗生素源源不断地进入环境并呈现一种持久存在的状态。由于其影响表面水体及污水处理厂中的微生物群落,危及水生生态平衡,并且促使细菌耐药性的出现,因而日益成为一类新型的环境污染物受到全世界的关注[1]。
目前,四环素类、喹诺酮类、磺胺类及大环内酯类等抗生素的耐药微生物已经广泛出现于土壤、 污水处理厂出水、河道沉积物、甚至饮用水中[2]。抗生素在土壤中的含量很低,一般常为ng/ml~μ g/ml,但其通过生态系统富集传递对动物、植物及微生物和人体健康产生遗传毒性、慢性毒性及致癌性等危害。此外,抗生素在土壤中的不断积累,还可能会诱导和加速抗生素抗性基因(Antibiotics resistance genes,ARGs) 的产生和传播。因此,建立一种同时检测土壤中多种痕量抗生素的检测分析方法对于土壤环境的监测至关重要。抗生素的检测方法有生物检测法、理化检测法及酶联免疫法等
[2-4],其中对于复杂基质中或痕量抗生素的定性定量检测主要方法为液相色谱-串联质谱法(LC-MS/MS)法[5-8]。
本文建立了一种可同时检测土壤样本中四环素类、喹诺酮类、磺胺类及大环内酯类四大类共16种抗生素的液相色谱-串联质谱法,并实际运用于样本检测。该方法为探究土壤类等复杂基质的环境样本中低浓度、多种类抗生素的残留水平提供了一种快速高效的检测手段。
1.材料与方法
1.1主要仪器
液相质谱串联三重四级杆质谱联用仪(Sciex AD30-Qtrap6500+) ;移液枪(Eppendorf);电子天平(Mettler toledo);离心机(美国Thermo Fisher);超声仪(昆山超声仪器有限公司);纯水仪(美国Millipore)。
1.2主要试剂与材料
土霉素、金霉素、多西环素、盐酸四环素四种四环素混合标准溶液(100 μg/ml,First Standard);环丙沙星、达氟沙星、恩诺沙星、沙拉沙星四种喹诺酮类混合标准溶液(100 μg/ml,阿尔塔);磺胺嘧啶、磺胺二甲嘧啶、磺胺甲恶唑、磺胺间甲氧嘧啶、磺胺喹噁啉五种磺胺类混合标准溶液(100 μg/ml,First Standard);泰乐菌素、阿奇霉素、替米考星三种大环内酯类混合标准溶液(100 μg/ml,First Standard);甲醇、乙腈、丙酮均为色谱级(Fisher);甲酸色谱级(ACS);水为超纯水-Milli Q级(电阻率不低于18兆欧),HLB固相萃取柱(北京康源泰博生物科技有限公司)。
1.3实验过程
1.3.1标准溶液配制
精密移取四环素混合标准溶液、喹诺酮类混合标准溶液、磺胺类混合标准溶液及大环内酯类混合标准溶液适量,以甲醇稀释至每1ml含土霉素(oxytetracycline hydrochloride,OT)、金霉素(chlortetracycline hydrochloride,AM)、多西环素(Doxycycline hydrochloride hemiethanolate hemihydrate,DOX)、盐酸四环素(Tetracycline hydrochloride,TE)、环丙沙星(Ciprofloxacin,CIP)、达氟沙星(Danofloxacin,DFLX)、恩诺沙星(Enrofloxacin,ENR)、沙拉沙星(Sarafloxacin,SAR)、磺胺嘧啶(Sulfadiazine,SD)、磺胺二甲嘧啶(Sulfamethazine,SMZ)、磺胺甲恶唑(Sulfamethoxazole,SMX)、磺胺间甲氧嘧啶(Sulfamonomethoxine,SMM)、磺胺喹噁啉(Sulfaquinoxaline,SQ)、泰乐菌素(Tylosin,TYL)、阿奇霉素(Azithromycin,AZM)、替米考星(Tilmicosin,TIL)1 μg的混合标准储备溶液。精密移取16中抗生素混合标准储备溶液适量,以30%甲醇/水溶液依次稀释至2、5、10、20、100、200 ng/ml浓度梯度的工作溶液。
1.3.2样品溶液配制
(1)样品提取
称取1g土壤样品于50 ml离心管中,加入10ml Na2EDTA-Mellvaine缓冲溶液,涡旋混合30s,超声提取15min,以8000r/min离心10min,取上清液,残渣再用10ml Na2EATA-Mellvaine缓冲溶液、5ml有机混合溶液(甲醇:乙腈:丙酮=2:2:1,pH 4.0)、5ml有机混合溶液(甲醇:乙腈:丙酮=2:2:1,pH 4.0)提取3次,合并上清液,过0.45 μm有机滤膜,待净化。
(2)样品纯化
HLB柱依次通过5ml甲醇、10ml纯化水预处理,使HLB住体保持湿润。将上述样液移至HLB柱中,调节下滴速度,控制样液以1ml/min~3ml/min的速度稳定下滴。待样液滴完后,往注射器筒内加入2×10ml 水,以稳定流速淋洗HLB柱。待溶液滴完后,用真空泵抽干亲和柱。脱离真空系统,在亲和柱下部放置15 ml离心管,加入10 ml甲醇洗脱亲和柱,控制1ml/min~3ml/min的速度下滴,所得洗脱液氮吹近干,以30%甲醇/水溶液定容至1ml,过0.22μm滤膜过滤,收集滤液于进样瓶中,得供试品溶液。
1.4 分析方法
1.4.1色谱条件
色谱柱为Agilent SB C18( 150×4.6mm,4μm),流动相A:0.1%甲酸水溶液;流动相B:甲醇;柱温40℃;进样体积5μl;流速:1.0 ml/min;按表1中程序进行梯度洗脱。
表1 流动相梯度
时间(min) | 流速(ml/min) | A相(%) | B相(%) | |
流动相梯度 | 0 | 1.0 | 98 | 2 |
1 | 1.0 | 98 | 2 | |
10 | 1.0 | 75 | 25 | |
18 | 1.0 | 30 | 70 | |
19 | 1.0 | 5 | 95 | |
23 | 1.0 | 5 | 95 | |
23.1 | 1.0 | 98 | 2 | |
27 | 1.0 | 98 | 2 |
1.4.2 质谱条件
离子源参数见表2,化合物参数见表3。
表2 离子源参数表
离子源参数 | |
离子源 | ESI |
极性 | Positive |
扫描模式 | 多反应监测(MRM) |
喷雾电压(V) | 5500 |
离子源温度(℃) | 550 |
Curtain Gas (psi) | 35 |
Ion Source Gas1 (psi) | 50 |
Ion Source Gas2 (psi) | 60 |
驻留时间(msec) | 20 |
表3化合物参数表
化合物 | 极性 | 母离子 | 子离子 | CE | DP | |
中文名 | 英文缩写 | |||||
磺胺嘧啶 | SD | pos | 251.021 | 155.904* | 40 | 40 |
251.021 | 91.998 | 21 | 128 | |||
磺胺二甲嘧啶 | SMZ | pos | 279.052 | 185.968* | 10 | 46 |
279.052 | 91.989 | 15 | 53 | |||
磺胺甲恶唑 | SMX | pos | 254.02 | 92.064* | 58 | 58 |
254.02 | 155.907 | 58 | 58 | |||
磺胺间甲氧嘧啶 | SMM | pos | 281.031 | 155.89* | 101 | 101 |
281.031 | 91.992 | 96 | 96 | |||
磺胺喹噁啉 | SQ | pos | 300.9 | 107.9* | 122 | 122 |
300.9 | 155.8 | 107 | 107 | |||
环丙沙星 | CIP | pos | 332.101 | 231.011* | 102 | 102 |
332.101 | 288.08 | 102 | 102 | |||
达氟沙星 | DFLX | pos | 358.7 | 341.2* | 82 | 82 |
358.7 | 315.2 | 100 | 100 | |||
恩诺沙星 | ENR | pos | 360.133 | 316.104* | 101 | 101 |
360.133 | 245.058 | 112 | 112 | |||
沙拉沙星 | SAR | pos | 386.092 | 342.057* | 106 | 106 |
386.092 | 299.023 | 100 | 100 | |||
泰乐菌素 | TYL | pos | 916.423 | 174.058* | 100 | 100 |
916.423 | 772.303 | 74 | 74 | |||
替米考星 | TIL | pos | 869.47 | 174.067* | 73 | 73 |
869.47 | 696.359 | 78 | 78 | |||
阿奇霉素 | AZM | pos | 749.477 | 158.076* | 100 | 100 |
749.477 | 82.951 | 100 | 100 | |||
盐酸四环素 | TE | pos | 445.185 | 410.109* | 114 | 114 |
445.185 | 427.204 | 114 | 114 | |||
金霉素 | AM | pos | 479.146 | 444.006* | 113 | 113 |
479.146 | 153.99 | 118 | 118 | |||
土霉素 | OT | pos | 461.18 | 426.045* | 113 | 113 |
461.18 | 443.199 | 122 | 122 | |||
多西环素 | DOX | pos | 445.185 | 428.051* | 104 | 104 |
445.185 | 321.056 | 104 | 104 |
* 定量离子
2.验证内容与结果
2.1专属性与系统适用性试验
空白溶液即30%甲醇/水溶液及供试品溶液不干扰各抗生素的检测。见图1-3。100 ng/ml 浓度的工作溶液连续进样6针,各物质峰面积的RSD小于15%,系统适用性满足测定需求。
图1 空白溶液色谱图
图2 标准品色谱图
图3 样品色谱图
2.2检测限与定量限
每针LOD溶液的信噪比(S/N)不小于3,每针LOQ溶液的信噪比(S/N)不小于10,连续6针LOQ中目标峰峰面积的RSD不大于25%。方法的检出限为0.05~2 μg/kg,定量限为0.15~6 μg/kg。结果见表4。
2.3线性与范围
采用外标法进行定量,通过测定不同浓度的标准品制备拟合曲线,16种抗生素在2~200 ng/ml范围内线性良好,线性回归方程系数(r)均大于0.995,结果见表4。
表4 16种抗生素的线性范围、线性关系、检测限与定量限
化合物名称 | 保留时间(min) | 方程 | 拟合度(r) | 检测限 (μg/kg) | 定量限 (μg/kg) |
磺胺嘧啶 | 7.555 | y = 4.21137e5 x + 5.78525e5 | 0.99928 | 0.5 | 1.5 |
磺胺二甲嘧啶 | 11.497 | y = 7.01422e5 x + 1.05175e6 | 0.99948 | 0.05 | 0.15 |
磺胺甲恶唑 | 12.767 | y = 1.69054e5 x + 3.76694e5 | 0.99845 | 0.5 | 1.5 |
磺胺间甲氧嘧啶 | 12.982 | y = 2.27453e5 x + 1.82272e5 | 0.99989 | 0.5 | 1.5 |
磺胺喹噁啉 | 15.712 | y = 7.32267e4 x + 8.44654e4 | 0.99973 | 2 | 6 |
环丙沙星 | 12.871 | y = 2.20434e5 x + 3.48906e5 | 0.99992 | 0.5 | 1.5 |
达氟沙星 | 13.129 | y = 5134.50601 x - 550.96001 | 0.99714 | 2 | 6 |
恩诺沙星 | 13.051 | y = 2.52274e5 x - 5.22031e4 | 0.99879 | 2 | 6 |
沙拉沙星 | 13.763 | y = 1.51629e5 x + 6.65947e4 | 0.99816 | 2 | 6 |
泰乐菌素 | 18.180 | y = 27855.56212x+ 6.55692e4 | 0.99962 | 2 | 6 |
替米考星 | 16.514 | y = 6.98167e4 x + 1.59704e5 | 0.99829 | 0.5 | 1.5 |
阿奇霉素 | 15.628 | y = 1.03217e5 x + 1.43919e5 | 0.99985 | 0.5 | 1.5 |
盐酸四环素 | 12.345 | y = 9.89401e4 x - 3.10308e5 | 0.99934 | 0.5 | 1.5 |
金霉素 | 14.853 | y = 1.03889e5 x - 6.63629e5 | 0.99547 | 0.5 | 1.5 |
土霉素 | 12.640 | y = 1.30703e5 x - 9.53509e5 | 0.99735 | 0.5 | 1.5 |
多西环素 | 16.334 | y = 1.30928e5 x - 5.20739e5 | 0.99848 | 0.5 | 1.5 |
2.4准确度
准确度用回收率试验评价,在供试品中加入50 、100、150 μg/kg 三个不同浓度水平的磺胺嘧啶、环丙沙星、阿奇霉素及盐酸四环素,每个水平平行制备3份,通过测定回收率的方法考察该方法的准确度。通过外标法计算土壤中抗生素的回收率。结果表明每个浓度水平的平均加标回收率在81.1%~ 102%之间;6份加标样品溶液回收率的RSD在1.91%~5.77%之间,结果见表5。
表5 磺胺嘧啶、环丙沙星、阿奇霉素及盐酸四环素加样回收率结果
抗生素 | 浓度水平(μg/kg) | 原有量(ng) | 测得量(ng) | 加入量(ng) | 回收率(%) | 平均回收率(%) | 总回收率(%) | RSD (%) |
磺胺嘧啶 | 50 | 0 | 47.05 | 50 | 94.1 | 91.3 | 97.8 | 5.77 |
0 | 42.7 | 50 | 85.4 | |||||
0 | 47.15 | 50 | 94.3 | |||||
100 | 0 | 102 | 100 | 102.0 | 101.5 | |||
0 | 100.4 | 100 | 100.4 | |||||
0 | 102 | 100 | 102.0 | |||||
150 | 0 | 151.05 | 150 | 100.7 | 100.6 | |||
0 | 149.7 | 150 | 99.8 | |||||
0 | 151.95 | 150 | 101.3 | |||||
环丙沙星 | 50 | 0 | 46.2 | 50 | 92.4 | 95.7 | 93.6 | 1.91 |
0 | 49.5 | 50 | 99.0 | |||||
0 | 47.85 | 50 | 95.7 | |||||
100 | 0 | 91.6 | 100 | 91.6 | 92.5 | |||
0 | 95.2 | 100 | 95.2 | |||||
0 | 90.7 | 100 | 90.7 | |||||
150 | 0 | 135 | 150 | 90.0 | 92.7 | |||
0 | 144 | 150 | 96.0 | |||||
0 | 138.3 | 150 | 92.2 | |||||
阿奇霉素 | 50 | 0 | 40.55 | 50 | 81.1 | 88.2 | 93.0 | 4.5 |
0 | 42.85 | 50 | 85.7 | |||||
0 | 43 | 50 | 86.0 | |||||
100 | 0 | 89.9 | 100 | 89.9 | 95.3 | |||
0 | 85.4 | 100 | 85.4 | |||||
0 | 89.2 | 100 | 89.2 | |||||
150 | 0 | 142.5 | 150 | 95.0 | 95.6 | |||
0 | 142.5 | 150 | 95.0 | |||||
0 | 143.85 | 150 | 95.9 | |||||
盐酸四环素 | 50 | 0 | 44.05 | 50 | 88.1 | 94.4 | 92.7 | 2.02 |
0 | 44.6 | 50 | 89.2 | |||||
0 | 45.45 | 50 | 90.9 | |||||
100 | 0 | 93.2 | 100 | 93.2 | 90.7 | |||
0 | 92.8 | 100 | 92.8 | |||||
0 | 97.3 | 100 | 97.3 | |||||
150 | 0 | 138.75 | 150 | 92.5 | 93.1 | |||
0 | 129 | 150 | 86.0 | |||||
0 | 140.25 | 150 | 93.5 |
2.5溶液稳定性
在室温条件下考察对照品溶液、供试品溶液和加标供试品溶液放置0h、2h、4h、8h、12h、24h后峰面积及含量变化情况。结果表明24h内稳定性试验溶液的含量在初始含量的80%~120%之间,溶液在24h内稳定。
2.6耐用性
在分别选用不同的质谱条件测试磺胺嘧啶、环丙沙星、阿奇霉素及盐酸四环素,按照方法规定计算对照品溶液和供试品溶液,考察在测试条件有较小波动时方法的耐用程度。变动的参数见表7。结果表明在改变色谱柱、改变柱温及流速条件下检测到的磺胺嘧啶、环丙沙星、阿奇霉素及盐酸四环素与正常条件相比,含量与正常条件的比值在80%~120%范围内,表明方法耐用性良好。
表7 耐用性试验参数
参数 | 规定值 | 变化范围 |
柱温(℃) | 35 | 33~37 |
流速(ml/min) | 1.0 | 0.8~1.2 |
色谱柱类型 | Agilent SB C18(150×4.6mm, 4μm) | Agilent EC-C18、Welch XB-C18 |
2.7样品检测
方法验证通过后,对20批次土壤样品进行检测。结果表明20批次土壤样本中未检出抗生素。
讨论
1.样本前处理方法选择
土壤样本其组成不但复杂,而且测定时往往相互干扰,同时抗生素在土壤中的浓度较低,因此对于复杂基质的样品尤其是各种环境与生物样本采集后直接进行测定的可能性很小,一般都要经过样本制备与前处理后才能测定。样品前处理除富集浓缩被测痕量组分外,还可以消除基体对测定的干扰,提高方法的选择性;使被测组分从复杂的样品中分离出来;除去对仪器或分析系统有害的物质等作用。常用的样品前处理方法有酸碱提取法、 湿消化法、干消化法及微波消解法等。在本实验中,因考虑到四环素类和氟喹诺酮类抗生素可与环境中的二价金属离子形成复杂螯合物后而不可逆地吸附在固相萃取柱上或者黏附在玻璃器皿上[2]。 因此,需要向环境样品中加入螯合剂,如乙二胺四乙酸二钠 (Na2 EDTA)、 草酸或柠檬酸,以去除干扰、 改善峰形,其中 Na2 EDTA 是最常用的手段。 本实验参考《中华人民共和国农业行业标准》NY/T3787-2020[9]对土壤基质的前处理方法,采用向样本中加入Na2 EDTA-柠檬酸缓冲液体系去除干扰。
2.固相萃取柱的选择
固相萃取(solid phase extraction,SPE)是一种从20世纪80年代中期发展起来的一种样品前处理技术,具有速度快、 稳定性好、 绿色环保等优点[2],因此对于环境中抗生素的富积净化常采用固相萃取法。在固相萃取法中,选择合适的固相萃取柱对于降低样品基质干扰及提高检测灵敏度尤为关键。固相萃取柱的种类[10]包括:(1)烷基键合硅胶类,常见的有C18柱,常用于中等极性到非极性化合物的分析,但由于此类固相萃取柱含有自由硅醇基团,会与四环素类抗生素发生不可逆的结合;(2)亲脂性二乙烯苯和亲水性 N-乙烯基吡咯烷酮两种单体按一定比例聚合成的大孔共聚物,如 HLB 柱,适用于所有物质,pH 范围1~ 14;(3) 强阳离子交换柱MCX,对酸性药物具有较好的保留,对于中性或碱性物质的保留较差。本实验中采用HLB固相萃取柱实现对土壤样品中四环素类、喹诺酮类、磺胺类及大环内酯类四类共16种抗生素的高效萃取,操作简单。
3.复溶条件的选择
实验中我们发现,在样品经过HLB固相萃取柱萃取、富集浓缩后,采用不同浓度的甲醇/水溶液对各抗生素的检出及峰形有较大影响。我们考察了用70%甲醇/水溶液、50%甲醇/水溶液、30%甲醇/水溶液、10%甲醇/水溶液作为对1.3.2项下样品纯化步骤中样品复溶,考察不同极性的甲醇水溶剂对各抗生素检测的影响。结果发现当采用30%甲醇/水溶液复溶时16种抗生素全部出峰,且峰形对称性最佳。原因可能是由于抗生素溶解度的差异,在溶剂极性较大或较小时均会影响抗生素的离子化状态。因此,我们选择30%甲醇/水溶液作为复溶的溶剂。
4.流动相种类及洗脱梯度
由于16种抗生素性质差异较大,为达到在常规分析时间内同时检测四类16种抗生素的目的,因此需对流动相的种类及洗脱程序进行考察及优化。水-甲醇及水-乙腈都是UPLC-MS/MS常用的洗脱溶剂,本研究通过前期文献调研及参考《中华人民共和国农业行业标准》NY/T3787-2020[9]中流动相的种类,对水-甲醇及水-乙腈进行考察。我们研究发现在水-甲醇或水-乙腈体系中16种抗生素均未完全出峰,通过往体系中加入甲酸增强靶标响应及改善目标峰[11],16种抗生素无论在峰形及分离度上均有明显改善。同时,实验过程中发现甲醇的洗脱能力大于乙腈,这是由于目标抗生素总体而言极性较大,甲醇的极性高于乙腈,而且对照品及供试品溶液配制过程中均是采用水-甲醇体系,因此流动相选择为0.1%甲酸水-甲醇体系。在流动相的洗脱梯度优化上,我们选择先由高比例的水相逐渐过渡到高比例有机相,再回到初始流动相比例的方式进行洗脱,保证在土壤中水溶性杂质不影响各目标物质的保留,且进样分析前后流动相的比例相同,确保下一次进样的准确性。
结论
本实验建立了一种LC-MS/MS法同时检测土壤样品中四环素类、喹诺酮类、磺胺类及大环内酯类四类共16种抗生素药物残留的方法,该方法操作方便、灵敏度高、准确度高。
参考文献
[1] 丁世敏. 磺胺类抗生素的光降解及其光致毒性研究[D]. 西南大学, 2019.
[2] 吕振娥. 土壤中抗生素类物质的分析研究进展[J]. 农业与技术, 2021, 41(6): 52-55.
[3] 韦达理. 几种新型氨基糖苷类抗生素免疫分析方法建立及初步应用[D]. 江苏大学, 2019.
[4] 邢家溧,张子庚,郑睿行,等. 固相萃取-超高效液相色谱-串联质谱法检测婴幼儿奶粉中的7种链格孢霉毒素[J]. 色谱: 1-9.
[5] 龚蕾,韩智,曹琦,等. 超高效液相色谱串联质谱法测定蔬菜中31种抗生素[J]. 食品安全质量检测学报, 2021, 12(1): 43-49.
[6] 严明,唐建,严寒,等. 高效液相色谱–串联质谱法同时测定饲料中10种喹噁啉类和四环素类抗生素[J]. 化学分析计量, 2021, 30(5): 55-69.
[7] 徐 圆 ,徐 宇 峰,曹 赵 云,等 . QuEChERS-液相色谱-串联质谱法测定稻田中土壤及水稻中抗生素的残留量[J].环 境 工 程 学 报,2021,15(9): 3112-3120.
[8]Petrarca M H,Braga P, Reyes F, et al. Exploring miniaturized sample preparation approaches combined with LC-QToF-MS for the analysis of sulfonamide antibiotic residues in meat- and/or egg-based baby foods[J]. Food Chemistry, 2021(4):130587.
[9] NY/T 3787-2020,土壤中四环素类,氟喹诺酮类,磺胺类,大环内酯类和氯霉素类抗生素含量同步检测方法 高效液相色谱法[S].
[10] 吕惊晗,蒋华宇. 4种固相萃取柱筛选血中67种毒(药)物[J]. 刑事技术, 2020, 45(1): 64-66.
[11] 宋慧婷,李长印,万瑶瑶,等. 应用基于LC-TOF-MS分析的质量亏损过滤方法筛选黄芪注射液中的皂苷类成分 (1)[J]. 中国中药杂志,2017,42(4):686-695.