例析几何法在解三角形问题中的应用

(整期优先)网络出版时间:2022-07-29
/ 1

例析几何法在解三角形问题中的应用

赵强

四川省西昌市凉山州民族中学   615000

在高中阶段,运用正、余弦定理构造关于三角形边角的方程,是求解三角形问题的基本方法。对于解三角形问题的客观题,如果借助平面几何知识,有时更为简单、直观有效,人教A版《必修5》1.1节的“探究与发现”运用几何法理解、解读结论,充分体现了数形结合的思想。我们可以通过对称变换、旋转伸缩变换,以及直线和圆的几何知识转化问题,以便实现求解三角形。

一、构造直线(射线)、圆

例1.在eqId15c0dbe3c080c4c4636c64803e5c1f76中,角所对的边分别为eqId0a6936d370d6a238a608ca56f87198deeqId2c94bb12cee76221e13f9ef955b0aab1eqId071a7e733d466949ac935b4b8ee8d183,则下列对三角形解的个数的判断正确的是(       )

A.eqId9f34365e5040ce6944115c8da61bf110eqIdf704179f68ce7fb0ccea3d5e36282ffdeqId43b86d43790babcdbbdc03493ee70928,有两解

B.eqId3c024bc6edf6ebdc2bf1d5368dcec4cdeqIdc8db2ddebbe1b2afa140c825363a8f14eqIdab0a5ac5e68ab81c89b7b1f31e5cf039,有一解

C.eqIdf8120119749d4bc28067e73fca7d46cdeqId5af039cad52ca4e1f1e322277bc81afdeqIdaa1466856bf2570685d3629c1f813748,无解

D.eqIdf08ce80e91fdf435a8e3ec05be990e9deqId86718fa3bd81961f00798692fbf86db1eqIde54a36173cd9b7b28e91619d715cb569,有两解

【分析】选项都是已知边eqId0a6936d370d6a238a608ca56f87198deeqId2c94bb12cee76221e13f9ef955b0aab1和角,画出角,取点eqIdc5db41a1f31d6baee7c69990811edb9f满足,以eqIdc5db41a1f31d6baee7c69990811edb9f为圆心,eqId0a6936d370d6a238a608ca56f87198de为半径作圆eqIdc5db41a1f31d6baee7c69990811edb9f,判断圆eqIdc5db41a1f31d6baee7c69990811edb9f与射线有几个公共点(不包括点).选项A,C,D情形如图1,选项B情形如图2.对选项B,因eqId432d77fe5ad3032d59a237dd94c8a638,则只有一公共点,故B正确.

 

 

例2.在锐角eqId15c0dbe3c080c4c4636c64803e5c1f76中,角eqId7f9e8449aad35c5d840a3395ea86df6deqId7f9e8449aad35c5d840a3395ea86df6deqIdc5db41a1f31d6baee7c69990811edb9f所对的边分别为eqId0a6936d370d6a238a608ca56f87198deeqId2c94bb12cee76221e13f9ef955b0aab1eqId071a7e733d466949ac935b4b8ee8d183,若eqId7f9e8449aad35c5d840a3395ea86df6deqId9f34365e5040ce6944115c8da61bf110

eqId7f9e8449aad35c5d840a3395ea86df6d,则eqId7f9e8449aad35c5d840a3395ea86df6d的最大值是(       )

A.eqIdf704179f68ce7fb0ccea3d5e36282ffd        B.eqId3c024bc6edf6ebdc2bf1d5368dcec4cd        C.eqIdf8120119749d4bc28067e73fca7d46cd       D.eqIdf08ce80e91fdf435a8e3ec05be990e9d

【分析】如图,在锐角eqId15c0dbe3c080c4c4636c64803e5c1f76中,过作直线垂直eqIdc5db41a1f31d6baee7c69990811edb9f于点

eqId7f9e8449aad35c5d840a3395ea86df6deqId9f34365e5040ce6944115c8da61bf110,所以eqId7f9e8449aad35c5d840a3395ea86df6d,在射线

取点eqIdc5db41a1f31d6baee7c69990811edb9f,使得eqIdc5db41a1f31d6baee7c69990811edb9f,则

所以eqId7f9e8449aad35c5d840a3395ea86df6d,故D正确.

例3.在eqId15c0dbe3c080c4c4636c64803e5c1f76中,eqId3570a95f68349fcd9417fcda62e78e7e,点eqId8455657dde27aabe6adb7b188e031c11是边eqIdf52a58fbaf4fea03567e88a9f0f6e37e的中点,eqId15c0dbe3c080c4c4636c64803e5c1f76的面积为eqId61128ab996360a038e6e64d82fcba004,则线段eqId9d78abbad68bbbf12af10cd40ef4c353的取值范围是(       )

A.eqId72b6402cb81f828607d146de4df6a39dB.eqIdab8cd07c4cb324cb20416fc3fbbf8e81C.eqIdf275191df140e2d69382cc64155cd871D.eqId17f82446db626bc1ff915cd0c8b12cee

【分析】在eqId15c0dbe3c080c4c4636c64803e5c1f76中,设eqId5ec5b37f915aafa9e033ad338d5b707a,由题意得eqId3570a95f68349fcd9417fcda62e78e7e

根据阿波罗尼斯圆的定义,点eqId8455657dde27aabe6adb7b188e031c11在以射线eqId5ec5b37f915aafa9e033ad338d5b707a上一点eqId8455657dde27aabe6adb7b188e031c11为圆心,

为半径的圆上(如图),且eqId15c0dbe3c080c4c4636c64803e5c1f76的面积为1,

,即,故选C.

例4.设锐角eqId15c0dbe3c080c4c4636c64803e5c1f76的内角eqId24e0c10fb103930eabd5fa18e8f9bb06所对的边分别为eqId76f0649064a085fb74c997fb507a9b6d,若eqIde20438e2f69e1d191baf5e3cd798525f,则eqIda881309775c3b6a9f4ed408838666342eqId3abd478c265ba11d0317c4b807812560的取值范围为(       )

A.(1,9]        B.(3,9]     C.(5,9]     D.(7,9]

【分析】

由正弦定理eqIdc9fd178ecc92041a5f080f63190ea33ceqIdc9fd178ecc92041a5f080f63190ea33ceqId15c0dbe3c080c4c4636c64803e5c1f76的外接圆半径),

再由余弦定理可得eqIda881309775c3b6a9f4ed408838666342eqId3abd478c265ba11d0317c4b807812560eqIdccf70af17a5828c73cba024ce3067fa3

如图,由对称性可知当点eqId24e0c10fb103930eabd5fa18e8f9bb06位于劣弧(不含eqId24e0c10fb103930eabd5fa18e8f9bb06

eqId15c0dbe3c080c4c4636c64803e5c1f76为锐角三角形,eqId15c0dbe3c080c4c4636c64803e5c1f76eqId15c0dbe3c080c4c4636c64803e5c1f76,则eqIda881309775c3b6a9f4ed408838666342eqId3abd478c265ba11d0317c4b807812560的范围为(7,9],故选D.

例5.已知△ABC为锐角三角形,DE分别为ABAC的中点,且CDBE,则cosA的取值范围是

A.eqId461d7c9510f0cd34115560268e06da80B.eqId80961a356a267e62f451406c7efe9decC.[eqIdcdba391f335c84a5dc7f49475206218bD.eqId9d1958d12069735c802a19048a1d8fb8

【分析】

eqId7d5c1da4b476133c0d04f66d72cf2535交于点eqId895dc3dc3a6606ff487a4c4863e18509,连接eqId77a7e4a6765ce78b05ee97764771e01f,延长交eqId0dc5c9827dfd0be5a9c85962d6ccbfb1eqIda0ed1ec316bc54c37c4286c208f55667,则eqIda0ed1ec316bc54c37c4286c208f55667eqId0dc5c9827dfd0be5a9c85962d6ccbfb1

中点,由直角三角形与重心的性质可得eqIdd3b18c857fa2153f4b36ec22d8af1b64,不妨设

eqIdd3b18c857fa2153f4b36ec22d8af1b64,则点eqIdd3b18c857fa2153f4b36ec22d8af1b64在以eqIda0ed1ec316bc54c37c4286c208f55667为圆心,3为半径的劣弧(不含eqId24e0c10fb103930eabd5fa18e8f9bb06)上(如图).eqId15c0dbe3c080c4c4636c64803e5c1f76eqId15c0dbe3c080c4c4636c64803e5c1f76,由对称性可知eqId5201fc26d013f6fb889933c0e32f5c53的取值范围为eqId9d1958d12069735c802a19048a1d8fb8,故选D.

二、对称、旋转构造

例6.如图,已知eqIdcd6c71a0da6a878a5b12bf8a8e784645是半径为1,圆心角为eqId55c12aeebfa1af16f325c98a43bb08c1的扇形,点eqId24e0c10fb103930eabd5fa18e8f9bb06分别是半径eqId139c0ae68e597571ba72ef727fa9222c及扇形弧上的三个动点(不同于eqId2665479c5fb12e1e728716a30a219c27三点),则eqId0faed94a64b2dcfc6801b4fca0f16675周长的最小值是(  )

A.eqId8eeba443f6c1b9312effe26d19c2fb52B.eqId1e66e298a017ac727bbe8dd90e7db938

B.C.eqId446cb67a80021d14c920e7c9cea54a9fD.eqId179553d3f7979226606770de11c908f8

【分析】

先根据对称性将边BC,边AC转移,再根据三角形三边在一直线时周长最小的思路即可解答.

作点C关于线段OQOP的对称点C1C2.连接CC1CC2

CABC=C1B+BA+AC2C1C2

又∵C1C2=

而∠C1OC2=∠C1OQ+∠QOC+∠COP+∠POC2

=2(∠QOC+∠POC)=2∠QOP=150°

==

∴△ABC的周长的最小值为

故选B.

例7.如图所示,在平面四边形中,

为等边三角形,则面积的最大值为_______.

【分析】将绕点eqId895dc3dc3a6606ff487a4c4863e18509逆时针方向旋转eqId895dc3dc3a6606ff487a4c4863e18509,将视为定

点,由题意可知点eqId895dc3dc3a6606ff487a4c4863e18509的轨迹是以定点eqId895dc3dc3a6606ff487a4c4863e18509为圆心,3为半径的圆.

故点eqId895dc3dc3a6606ff487a4c4863e18509到直线eqId7d5c1da4b476133c0d04f66d72cf2535的最大距离为eqId895dc3dc3a6606ff487a4c4863e18509,则面积的最

大值为eqIdab8cd07c4cb324cb20416fc3fbbf8e81.

通过上述各例题的解答分析,发现从几何角度解决类似的三角形求解的客观题,能较为形象直观的获得正确答案,但对思维层面要求较高,设定相应的定点(三角形的部分角的顶点),确定动点(角的顶点)的轨迹的能力要求较高。在平常的教学中,应该引领学生用发散的眼光对问题进行观察、分析、探索、提炼,提高学生直观想象能力的核心素养。

第4页