基于智能数据和机器学习的尿液检验结果解释性报告

(整期优先)网络出版时间:2021-06-25
/ 1
摘要目的建立一种基于人工智能的尿液检验结果解释性报告系统。方法收集2008—2018年浙江大学医学院附属第一医院患者2 899 917份、体检710 971份尿检数据,统计每个项目不同结果的频数分布建立大人群分布,再根据数据分布、项目重要性和结果异常程度,建立每个样本的健康指数和各项目的异常等级。收集糖尿病、尿路感染、肾小球肾炎、肾病综合征等疾病数据,按性别、年龄匹配同数量的健康对照组。基于AdaBoost算法的集成学习器建立模型并评估算法性能。用JAVA开发数据展示软件。用199份异常尿液检验结果,人工验证模型的准确性。结果每份报告分为正常、异常、疾病、危重4个等级;单个项目结果判断为正常、轻度、中度、重度、极度5个等级并提供大数据的人群分布;基于AdaBoost机器学习模型运用于7种疾病的训练准确度(≥88.3%)、真阳性率(≥80.0%)、曲线下面积(≥0.954)。开发的JAVA软件展示上述结果,并包括病历和结果、历史结果、个性化建议、异常项目科普、在大人群数据中的位置等内容。异常尿液结果可能的疾病相似度,人工验证机器学习模型的准确率为82.41%(164/199)。结论本研究建立了智能的结果解释性报告系统,能区分报告异常程度,具有较高疾病预测准确性,可提供个性化的临床决策信息。