基于电厂热能动力锅炉燃料及燃烧分析

(整期优先)网络出版时间:2019-12-27
/ 2

基于电厂热能动力锅炉燃料及燃烧分析

陈志远

内蒙古华云新材料有限公司热电厂 内蒙古包头市 014040

摘要:电厂热能动力锅炉是一种热能动力装置,可以将热能转换为机械能,而其热能的来源主要是燃烧煤和石油等形成的,再经过动力装置的作用进行转换。通过动力装置所产生的初始动力,可以驱动电厂发电机器,从而实现发电完成能量转换。在该锅炉装置中,会输入产生的热能等,经过一定作用输出高温液体或者水蒸汽。在燃烧燃料进行热能供应时,燃料会在装置设备部分燃烧而产生持续热能,经过传递到达锅炉装置的受热表面。因此本文深入探析了电厂热能动力锅炉燃料与燃烧方式,以期为电厂生产实现结构转型提供有力帮助。

关键词:电厂;热能动力锅炉;燃料;燃烧

按能量来源不同,锅炉可以分为燃气与燃煤等不同类型。其中,燃煤锅炉的燃料是煤炭,在炉膛中充分燃烧煤炭后,可以释放大量热量,并促使热煤水加热满足压力需要。燃煤锅炉自身也包括各式各样的燃料,即烟煤、褐煤等。而燃油锅炉的主要燃料是柴油和重油等,其可以加热水,并在取暖和洗浴等各个领域实现有效应用。燃气锅炉的主要燃料是燃气,即天然气和沼气等。一般情况下,我国大多数火力发电厂为了确保经济效益良好,会把煤炭作为主要燃料。在煤炭中,氢和碳等元素的含量比较高,其能够促使煤炭充分燃烧,如果锅炉中适当引入氧气,便可以进一步促进燃料燃烧。  

  1 电厂热能动力锅炉燃烧方式

  1.1 气体燃料燃烧

  锅炉气体燃烧仍旧是长焰燃烧,而由于其燃烧面积过大,不会与气体之间产生直接性接触,因此称为扩散性燃烧。在气体燃烧过程中,需在喷射火焰环节,发挥扩散优势与空气实现切实结合,从而保证燃烧的整体效果良好,此时火焰燃烧长度也会随之增长。受烧嘴限制影响,气体燃烧无法与空气产生接触,但是在喷射的时候,需要在其他部分燃烧时接触空气,以保障火焰燃烧具备显著效果。由于空气具有一定的助燃性,火焰长度比较短,而其他部分燃烧与气体结合,就会进一步加速火焰喷射速度,因为速度不断加快,一般来说根本无法实时观测火焰具体形状与结构特性。

  1.2 固体燃料燃烧

  固体燃料燃烧主要存储在挥发性较差,且不具备挥发结构的固体燃料内。在实际燃烧时,结构表面主要产生CO2和CO。在实际燃烧条件允许的情况下,CO2通过氧化作用,转化成燃烧的CO结构。主要燃烧条件为熔点比较低,在实际燃烧中,因为无法充分与氧气接触,从而使得燃烧结构表面的可燃性明显降低,以此成为固体的燃烧形态。另外,固体燃烧在平时日常生活中的应用比较常见,例如蜡烛,在使用时,如果时间过长,那么就可以发现固体燃烧的特性。固体燃烧针对的是极易被燃烧分解的结构,所以燃烧时一般产生的烟雾都比较厚重,也可以被看作是结构燃烧不充分,造成固体燃烧。

  2电厂热能动力锅炉燃料及燃烧分析

  2.1预热处理

  预热阶段,就是对燃料进行科学处理,待烘干挥发后,对其进行预热,以促进燃料燃烧。在这一阶段,燃料被充分加热,温度逐渐上升,燃料表面和缝隙中的水分就会被蒸发,使燃料表面变得干燥,而随着温度的进一步上升,燃料内部的水分也会慢慢消失。总而言之,这一部分燃料并没有放出热量,反而吸收了大部分热量,而燃料中的水分含量越多,热量吸收也就越多。一般情况下,电厂热能动力锅炉内的固体燃料可在300℃条件下实现充分燃烧,进而蒸发,并产生分解作用,一般燃料最佳预热温度不可低于300℃,不可超出400℃,如表2所示。因此在预热阶段,可令电厂热能动力锅炉内保持高温条件,令进入锅炉内的燃料达到预热效果,促进其自身水分蒸发,在预热作用下,燃料最终成为焦炭。在电厂热能动力锅炉内燃料燃烧的预热阶段,锅炉炉膛中无需引入氧气即可实现预热。在这一过程中要注意的是燃料水分的影响,当燃料水分越大时,排风量也进一步加大,同时也要注意温度的保持,过高或者过低的温度都会影响预热的质量,在锅炉燃烧中需要结合实际情况来对预热进行科学的调整。

  2.2对汽轮机的使用效率进行提升

  在锅炉燃烧过程中,火力发电厂的发电原理主要是通过汽轮机做功,把其中蒸汽产生的热能转化为发电所需的动能。可是,在汽轮机的使用过程中,由于内部结构的设置存在着一定的问题,比如由于叶片存在着一定间隙,在汽流经过时会造成一定的热能损失。针对这样的问题存在,相关人员应该对其进行修改,可以采用更改叶片类型或加快汽流经过速度等措施,使汽轮机在火力发电过程中,使用效率得到提高。

  2.3对燃煤类型进行合理选择

  因为锅炉炉型的结构是具有一定的差异,所以燃煤类型也是多种多样的,在对燃煤类型进行选择时,相关人员要从锅炉的运行情况、经济效益等多方面进行考虑,对可能造成锅炉无法正常运行的原因进行分析。此外,在燃煤类型的选择过程中,可以事先开展相应的燃烧试验,进而合理地选出合适的燃煤类型。

  2.4燃烧阶段

  这一阶段燃料继续被加热,温度继续升高,当达到一定程度时就会开始析出挥发分,进而形成热分解反应。当温度继续上升时,挥发分与氧的化学反应速度会加快,随后挥发分就会连续着火,在初期燃料表面覆盖的都是挥发分,阻滞了氧气與燃料的接触,燃烧的主体是燃料析出的物质,而随着挥发分的消耗,燃料最终得以与氧气进行接触,实现充分燃烧,物质得以充分发挥,待燃尽后,部分焦炭处于燃烧状态,此时即进入整个燃烧过程。为确保燃烧充分,这一阶段中必须引入氧气,满足燃烧需求,在燃烧阶段令氧气与燃料充分接触,达到强烈燃烧的状态,此时可充分释放热量,电厂热能动力锅炉的使用功能也得到充分发挥。为了保证整个燃烧阶段的质量,就需要合理控制氧气的投入以及整个锅炉的温度,如果空气过少则会导致燃料的不完全燃烧,造成损失,而空气过多则会影响整体的温度,同样也会影响整体的燃烧程度,降低了锅炉的热效率,同时也要给予充分的燃烧时间,确保其足够充分的燃烧。

  2.5燃尽阶段

  通过对炭灰进行观察可以发现,其包裹内部仅存部分可燃性物质成分,在这一过程中燃烧的速度会越来越慢,其热辐射的效率也会受到影响。与燃烧阶段不同,往往这时的锅炉中已经形成了较大的温差,越接近燃烧的地方温度越高,而炉膛出口的温度则会与燃烧中心的温度有着较大的差距,这是一个温度场逐渐减弱的过程。虽然燃烧已经接近了尾声,但实际上,在燃尽阶段也离不开氧气的支持,以确保炭灰内部包裹的可燃性物质成分得以充分燃烧,满足生产生活的热能需求,从而避免资源出现浪费。

  3 结语

  综上所述,我国电力资源供需矛盾突出,为了及时加以消除,需要合理利用电厂热能动力锅炉燃烧技术。其中热能动力锅炉可以转换能量,向锅炉内部添加燃料的高温烟气和化学能等热能形式,通过锅炉转换,输出包含热能的有机热载体、高温水与蒸汽等。而且电厂热能动力锅炉燃烧技术的合理利用,能够提高锅炉应用的整体效率和水平,从而保证电能资源利用率。

  参考文献:

  [1] 李阳冬.电厂热能动力锅炉燃料及燃烧分析[J].江西建材,2014(20):200~201.

  [2] 康付帅.电厂热能动力锅炉燃料和燃烧探析[J].科技创新与应用,2017(15):155~156.

  [3] 隋本友.电厂热能动力锅炉燃料及燃烧[J].环球市场信息导报,2016(48):127.