兰州大学第二医院内分泌科,甘肃 兰州 730030 2.康泰医院综合外科,甘肃 兰州 730030
摘要:己糖激酶-2(Hexokinase-2,HK2)最近被发现可以在高血糖中通过糖酵解产生更多的代谢通量,其主要是通过葡萄糖介导的HK2的稳定到蛋白质的水解来完成。而这导致糖酵解中间体的异常增加,引起线粒体功能障碍和己糖胺、蛋白激酶C和二羰基应激途径的激活。HK2相关的糖酵解过载解释了糖尿病与血管并发症相关的组织特异性发病机制,并在缺血再灌注损伤和细胞衰老的发病机制中起重要作用。这一新的致病机制假说为糖尿病的治疗提供了新的思路。
关键词:己糖激酶-2,糖酵解过载,糖尿病,缺血再灌注。
Research progress of hexokinase-2 glycolysis overload on diabetes mellitus and ischemia-reperfusion injury
Abstract: Hexokinase-2 (HK2) has recently been found to produce more metabolic flux through glycolysis in hyperglycemia, mainly through glucose-mediated stabilization of HK2 to protein hydrolysis. This leads to abnormal increase of glycolysis intermediates or glycolysis overload, causing mitochondrial dysfunction and activation of hexosamine, protein kinase C and dicarbonyl stress pathways. HK2-related glycolysis overload explains the tissue-specific pathogenesis of diabetes mellitus associated with vascular complications and plays an important role in the pathogenesis of ischemia-reperfusion injury and cell aging. This new hypothesis provides new ideas and targets for the treatment of diabetes mellitus.
Key words: Hexokinase-2, Glycolysis overload, diabetes, ischemia-reperfusion.
葡萄糖的代谢是由一个或者多个己糖激酶同工酶通过葡萄糖转运蛋白(GLUTs)和葡萄糖-6-磷酸(G6P)摄取进入细胞内[1, 2]。随后,G6P在糖酵解过程中主要进一步代谢为丙酮酸,一小部分由戊糖-5-磷酸途径代谢为核糖-5-磷酸,丙酮酸在三羧酸循环中进一步代谢为二氧化碳。葡萄糖代谢速率最高的组织,如大脑、心脏、和骨骼肌,糖酵解酶的浓度相应也很高。组织中糖酵解通量的变化与糖酵解的丰度和活性的变化相匹配,以实现糖酵解中间体在体内稳定浓度的微小变化[3]。最近的研究表明,当糖酵解的控制受损时,HK2的异常增加起着关键作用。在这种情况下,G6P和下游糖酵解中间体的异常增加是高血糖与糖尿病、缺血再灌注损伤和细胞衰老相关的组织特异性慢性发病机制的关键因素,而我们将这种破坏状态称为糖酵解过载[4-6]。本文就糖酵解过载的原因及其导致糖尿病、缺血再灌注损伤和细胞衰老的证据作一综述。
糖酵解过载
HK2的分子特性
与其他HKs相比,HK2的两个独特的分子和功能特性在糖酵解失调中具有重要作用。高糖浓度下HK2对蛋白水解的稳定作用是通过葡萄糖与N-和C -末端结构域结合介导的,增加酶的稳定性,并通过伴侣蛋白介导的自噬基序712QRFEK716在C -末端结构域的掩蔽作用,从结合到热休克蛋白同源物70[7, 8]。在葡萄糖浓度较高的细胞内,HK2降解更为稳定,HK2的周转率是HK1的5倍,因此,HK2蛋白丰度的变化可能对己糖激酶的总活性有显著影响;这两种HK通常在葡萄糖底物饱和的条件下原位发挥作用[9, 10]。
在正常的糖酵解代谢条件下,HK2在线粒体外膜上的电压依赖性阴离子通道(VDAC)的介导下与线粒体膜不稳定的连接。
VDAC为HK2从线粒体膜内空间进入ATP,形成G6P提供了通道[11]。随着G6P浓度的不断增加,HK2发生位移,VDAC中HK2的置换增加了线粒体膜电位,迫使呼吸链复合物进入降低的状态,增加了电子对氧的泄露和活性氧(ROS)的形成[12]。除此之外,通过蛋白激酶B (PKB/Akt)使HK2在thr473位点磷酸化,从而增加了HK2对线粒体的附着[13, 14]。因此,Akt介导的胰岛素和其他生长因子信号通路可能在抑制糖酵解线粒体功能障碍中发挥关键作用。相反,当这种反调节减弱时,线粒体中HK2的移位变得更容易,这就类似1型和2型糖尿病中的胰岛素缺乏症和胰岛素抵抗一样[15, 16]。
参与糖酵解过载的HK2
HK2在骨骼肌和脂肪组织中的高表达,是其糖酵解的一部分[17]。在肿瘤中,通过启动子甲基化和HK2基因的扩增,HK2的表达也经常增加[18]。与此同时,磷酸果糖激酶(PFK)活性的增加和葡萄糖-6-磷酸脱氢酶(G6PD)的表达支持糖酵解通量的增加,使肿瘤在不增加G6P浓度的情况下快速生长[19, 20]。HK2也在其他组织中表达。在中枢神经系统和外周神经系统的神经元中多见缺失[17]。目前的研究表明,增加的HK2活性往往是引发计划外的糖酵解和下游代谢功能障碍的驱动机制。
HK2驱动的糖酵解过载的代谢后果
当高血糖发生HK2连锁糖酵解过载时,早期糖酵解过程中糖酵解代谢物剧增,从G6P开始,一直到磷酸二羟丙酮(DHAP)和甘油醛-3-磷酸(GA3P)。流出到连接的信号通路会导致代谢和细胞功能障碍,而这些代谢和细胞功能障碍通常是发生在正常需求的糖酵解和稳态。其具体的代谢后果如下:①线粒体功能障碍导致ROS的形成和氧化应激的增加[21]。②果糖-6-磷酸增加导致葡萄糖胺-6-磷酸形成增加,并激活己糖胺通路[22]。③DHAP升高导致代谢流出量增加至甘油-3-磷酸和新生甘油二酰,激活蛋白激酶C通路[23]。④DHAP和GA3P的增加导致甲乙醛(MG)的形成和浓度增加,MG衍生的糖化终产物(AGEs)形成与二羰基应激通路有关[24]。MG衍生的AGEs增加会产生更多的蛋白质错误折叠,从而激活细胞质和内质网上的未叠蛋白反应(UPR),包括增加下游炎症和血栓前介质[25]。⑤糖原沉积量增加,线粒体中HK2的位移通过代谢糖原向糖原合成的通道增加糖原合成[26]。稳定的同位素标记研究表明,G6P存在糖酵解和糖原合成的离散通道[27]。糖原合成和沉积异常增加是线粒体HK2脱离及相关代谢功能障碍的敏感代谢指标或生物标志物[9]。
HK2连锁糖酵解过载参与细胞功能障碍的最有力证据是糖尿病的内皮功能障碍、糖尿病肾病的微血管并发症、视网膜病变、神经病和糖尿病胚胎病。基础表达增加的HK2也与糖尿病肾病的快速进展有关[28]。表现出HK2连接驱动糖酵解超载易感性的组成细胞类型为:血管内皮细胞、肾系膜细胞、足细胞、肾小管上皮细胞、视网膜内皮细胞、周细胞和周围神经系统的雪旺细胞。类似的低严重程度的发病机制预计在糖尿病前期。
糖尿病的另一个并发症可能是HK2连锁糖酵解超载引起的糖尿病胚胎病。研究显示,小鼠胚胎受孕后第10天的早期胚胎细胞主要通过GLUT1和GLUT3摄取葡萄糖,并通过HK2连锁糖酵解摄取葡萄糖[29, 30]。胚胎发育后第2天至10天,葡萄糖代谢主要为厌氧糖酵解,这一阶段糖酵解前期易导致胚胎发育失调[31]。在高糖浓度培养的早期胚胎和实验性糖尿病胚胎病:糖原沉积和代谢功能障碍的多种下游通路中,所有HK2连锁糖酵解过载的生物标志物均已被记录[29, 32-35]。此外,组织特异性祖细胞如内皮细胞和心脏祖细胞具有相似的葡萄糖摄取和HK2表达。它们在糖尿病中的功能障碍很可能是由HK2连锁的糖酵解超载引起的,同时也会导致糖尿病并发症的发生[36]。
HK2介导的糖酵解过载与缺血再灌注损伤
与高浓度G6P相关的一种情况是缺血再灌注损伤,其致病机制尚不完全清楚,因此迫切需要改善治疗。在心肌中,心肌梗死和心脏骤停后的心肌缺血会激活糖原增多症。这就满足了糖酵解的底物需求,特别是在缺血心肌营养和氧气供应受限时,转化为主要的厌氧糖酵解时。糖原增多被认为是缺血再灌注损伤心肌中G6P浓度增加三到十倍的主要原因。细胞葡萄糖浓度升高,线粒体中HK2解离[37, 38]。缺血时HK2的线粒体解离程度与再灌注时线粒体细胞色素c的释放及相关细胞死亡、ROS的产生、梗死面积有关[39]。一种含有HK2线粒体结合基序的细胞渗透肽,可诱导HK2从线粒体中转移,即TAT-HK2 (TAT peptide, GRKKRRQRRRPQ,来自HIV转录的反激活因子),加重心脏再灌注损伤,提示线粒体中HK2的转移是其发病机制的一个贡献特征
[40]。在糖尿病患者缺血再灌注损伤中,HK2蛋白表达增加,并逐渐从线粒体中转移。多年来,心肌缺血再灌注损伤中ROS生成增加的来源一直存在激烈的争论,其中线粒体功能障碍被认为是一个关键来源,但其启动机制尚不清楚[41]。用HK2连锁糖酵解过载重新评价心脏骤停后再灌注损伤的发病机制,可能有助于改进治疗。
HK2介导的糖酵解过载与细胞衰老
HK2连接的糖酵解过载可能是细胞衰老的一个关键中介。长期以来,我们都知道,随着细胞数量的增加,葡萄糖的消耗呈逐渐增加的趋势,其特征是在衰老期开始时,葡萄糖的消耗显著增加了3倍,己糖激酶活性增加了6倍[42]。这是由于HK2 mRNA和蛋白表达增加导致的HK2表达增加,以前也有关于衰老的人成纤维细胞中己糖激酶的总活性的报道[42-44]。衰老的途径以线粒体功能障碍、氧化应激、二羰基应激和糖原沉积为特征[45-47]。而在一系列监管抗氧化反应的目标基因中,调控G6PD的表达可能是一个关键的靶点。G6PD在启动子区具有功能,启动子区通过将G6P转入戊糖磷酸途径而降低G6P[48]。这抑制衰老相关的糖酵解超载,防止氧化应激和延缓衰老[49]。HK2连锁糖酵解过载解释了糖酵解增加、线粒体功能障碍、氧化应激和糖原沉积在衰老和延缓衰老的葡萄糖,热量限制和热量限制模拟化合物[45, 47, 49]。因此,它增加了目前细胞衰老的假设,改进了对关键实验观测的解释[50]。
以HK2驱动的糖酵解超载为靶点改进治疗办法
HK2连锁糖酵解过载假说暗示了HK2蛋白和G6P浓度的升高是糖尿病及其并发症发病机制的关键启动因子。治疗干预的一种方法是预防G6P的积累和线粒体HK2的移位。这可能是通过诱导G6PD表达增加和G6P转移到戊糖磷酸途径实现的。这是通过减少HK2在易受糖酵解过载影响的部位的chore连接表达来纠正HK2蛋白增加的。通过Mondo A/Mlx/G6P功能复合物的介导,降低G6P有望抑制HK2和其他调控基因的表达[51]。在人类皮肤成纤维细胞中,使用膳食激活剂Nrf2(花椰菜中发现的萝卜硫素)也能诱导G6PD的表达。采用萝卜硫素进行慢性治疗,每周一次,浓度与日常食用西兰花相似,可降低HK2的表达和葡萄糖的消耗,延缓细胞衰老[49]。进一步优化表达G6PD的小分子诱导剂,可能会产生改进的方法治疗疾病,其中涉及到HK2连接糖酵解过载的致病机制,并为健康衰老提供改进的膳食补充剂。
6.展望
HK2连锁糖酵解过载假说为糖尿病和糖尿病前期血管并发症、缺血再灌注损伤和细胞衰老的发生提供了一个更好的解释和实验观察。它还通过诱导G6PD表达为新的治疗方法提供了一条途径,这可能会带来一些好处,而不仅仅是以前常被认为仅限于抗氧化作用的好处,该假说值得进一步验证。
X参考文献
[1] Thorens B, Mueckler M. Glucose transporters in the 21st Century[J]. Am J Physiol Endocrinol Metab,2010,298(2):E141-E145.
[2] Wolf A, Agnihotri S, Micallef J, et al. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme[J]. J Exp Med,2011,208(2):313-326.
[3] Wisniewski J R, Gizak A, Rakus D. Integrating Proteomics and Enzyme Kinetics Reveals Tissue-Specific Types of the Glycolytic and Gluconeogenic Pathways[J]. J Proteome Res,2015,14(8):3263-3273.
[4] Irshad Z, Xue M, Ashour A, et al. Activation of the unfolded protein response in high glucose treated endothelial cells is mediated by methylglyoxal[J]. Sci Rep,2019,9(1):7889.
[5] Nederlof R, Gurel-Gurevin E, Eerbeek O, et al. Reducing mitochondrial bound hexokinase II mediates transition from non-injurious into injurious ischemia/reperfusion of the intact heart[J]. J Physiol Biochem,2016,73(3):323-333.
[6] Hariton F, Xue M, Rabbani N, et al. Sulforaphane Delays Fibroblast Senescence by Curbing Cellular Glucose Uptake, Increased Glycolysis, and Oxidative Damage[J]. Oxid Med Cell Longev,2018,2018:5642148.
[7] Nawaz M H, Ferreira J C, Nedyalkova L, et al. The catalytic inactivation of the N-half of human hexokinase 2 and structural and biochemical characterization of its mitochondrial conformation[J]. Biosci Rep,2018,38(1).
[8] Xia H G, Najafov A, Geng J, et al. Degradation of HK2 by chaperone-mediated autophagy promotes metabolic catastrophe and cell death[J]. J Cell Biol,2015,210(5):705-716.
[9] Irshad Z, Xue M, Ashour A, et al. Activation of the unfolded protein response in high glucose treated endothelial cells is mediated by methylglyoxal[J]. Sci Rep,2019,9(1):7889.
[10] Calmettes G, Ribalet B, John S, et al. Hexokinases and cardioprotection[J]. J Mol Cell Cardiol,2015,78:107-115.
[11] Rostovtseva T, Colombini M. VDAC channels mediate and gate the flow of ATP: implications for the regulation of mitochondrial function[J]. Biophys J,1997,72(5):1954-1962.
[12] Viticchie G, Agostini M, Lena A M, et al. p63 supports aerobic respiration through hexokinase II[J]. Proc Natl Acad Sci U S A,2015,112(37):11577-11582.
[13] Richards P, Ourabah S, Montagne J, et al. MondoA/ChREBP: The usual suspects of transcriptional glucose sensing; Implication in pathophysiology[J]. Metabolism,2017,70:133-151.
[14] Roberts D J, Tan-Sah V P, Smith J M, et al. Akt phosphorylates HK-II at Thr-473 and increases mitochondrial HK-II association to protect cardiomyocytes[J]. J Biol Chem,2013,288(33):23798-23806.
[15] Manning B D, Toker A. AKT/PKB Signaling: Navigating the Network[J]. Cell,2017,169(3):381-405.
[16] Kim Y B, Nikoulina S E, Ciaraldi T P, et al. Normal insulin-dependent activation of Akt/protein kinase B, with diminished activation of phosphoinositide 3-kinase, in muscle in type 2 diabetes[J]. J Clin Invest,1999,104(6):733-741.
[17] Gardiner N J, Wang Z, Luke C, et al. Expression of hexokinase isoforms in the dorsal root ganglion of the adult rat and effect of experimental diabetes[J]. Brain Res,2007,1175:143-154.
[18] Mathupala S P, Ko Y H, Pedersen P L. Hexokinase II: cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria[J]. Oncogene,2006,25(34):4777-4786.
[19] Yu L, Chen X, Sun X, et al. The Glycolytic Switch in Tumors: How Many Players Are Involved?[J]. J Cancer,2017,8(17):3430-3440.
[20] Mitsuishi Y, Taguchi K, Kawatani Y, et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming[J]. Cancer Cell,2012,22(1):66-79.
[21] John S, Weiss J N, Ribalet B. Subcellular localization of hexokinases I and II directs the metabolic fate of glucose[J]. PLoS One,2011,6(3):e17674.
[22] Buse M G. Hexosamines, insulin resistance, and the complications of diabetes: current status[J]. Am J Physiol Endocrinol Metab,2006,290(1):E1-E8.
[23] Lee T S, Saltsman K A, Ohashi H, et al. Activation of protein kinase C by elevation of glucose concentration: proposal for a mechanism in the development of diabetic vascular complications[J]. Proc Natl Acad Sci U S A,1989,86(13):5141-5145.
[24] Rabbani N, Xue M, Thornalley P J. Methylglyoxal-induced dicarbonyl stress in aging and disease: first steps towards glyoxalase 1-based treatments[J]. Clin Sci (Lond),2016,130(19):1677-1696.
[25] Irshad Z, Xue M, Ashour A, et al. Activation of the unfolded protein response in high glucose treated endothelial cells is mediated by methylglyoxal[J]. Sci Rep,2019,9(1):7889.
[26] John S, Weiss J N, Ribalet B. Subcellular localization of hexokinases I and II directs the metabolic fate of glucose[J]. PLoS One,2011,6(3):e17674.
[27] de Mas I M, Selivanov V A, Marin S, et al. Compartmentation of glycogen metabolism revealed from 13C isotopologue distributions[J]. BMC Syst Biol,2011,5:175.
[28] Iori E, Millioni R, Puricelli L, et al. Glycolytic enzyme expression and pyruvate kinase activity in cultured fibroblasts from type 1 diabetic patients with and without nephropathy[J]. Biochim Biophys Acta,2008,1782(11):627-633.
[29] Wolf A, Agnihotri S, Munoz D, et al. Developmental profile and regulation of the glycolytic enzyme hexokinase 2 in normal brain and glioblastoma multiforme[J]. Neurobiol Dis,2011,44(1):84-91.
[30] Segev H, Fishman B, Schulman R, et al. The expression of the class 1 glucose transporter isoforms in human embryonic stem cells, and the potential use of GLUT2 as a marker for pancreatic progenitor enrichment[J]. Stem Cells Dev,2012,21(10):1653-1661.
[31] Johnson M T, Mahmood S, Patel M S. Intermediary metabolism and energetics during murine early embryogenesis[J]. J Biol Chem,2003,278(34):31457-31460.
[32] Yang X, Borg L A, Eriksson U J. Altered mitochondrial morphology of rat embryos in diabetic pregnancy[J]. Anat Rec,1995,241(2):255-267.
[33] Eriksson U J, Wentzel P, Minhas H S, et al. Teratogenicity of 3-deoxyglucosone and diabetic embryopathy[J]. Diabetes,1998,47(12):1960-1966.
[34] Horal M, Zhang Z, Stanton R, et al. Activation of the hexosamine pathway causes oxidative stress and abnormal embryo gene expression: involvement in diabetic teratogenesis[J]. Birth Defects Res A Clin Mol Teratol,2004,70(8):519-527.
[35] Ellington S K. Effects of excess glucose on mammalian post-implantation embryos[J]. Int J Dev Biol,1997,41(2):299-306.
[36] Rodrigues M, Wong V W, Rennert R C, et al. Progenitor cell dysfunctions underlie some diabetic complications[J]. Am J Pathol,2015,185(10):2607-2618.
[37] Jennings R B, Sebbag L, Schwartz L M, et al. Metabolism of preconditioned myocardium: effect of loss and reinstatement of cardioprotection[J]. J Mol Cell Cardiol,2001,33(9):1571-1588.
[38] Jennings R B, Murry C E, Reimer K A. Energy metabolism in preconditioned and control myocardium: effect of total ischemia[J]. J Mol Cell Cardiol,1991,23(12):1449-1458.
[39] Pasdois P, Parker J E, Halestrap A P. Extent of mitochondrial hexokinase II dissociation during ischemia correlates with mitochondrial cytochrome c release, reactive oxygen species production, and infarct size on reperfusion[J]. J Am Heart Assoc,2012,2(1):e5645.
[40] Nederlof R, Gurel-Gurevin E, Eerbeek O, et al. Reducing mitochondrial bound hexokinase II mediates transition from non-injurious into injurious ischemia/reperfusion of the intact heart[J]. J Physiol Biochem,2016,73(3):323-333.
[41] Li C, Jackson R M. Reactive species mechanisms of cellular hypoxia-reoxygenation injury[J]. Am J Physiol Cell Physiol,2002,282(2):C227-C241.
[42] Zwerschke W, Mazurek S, Stockl P, et al. Metabolic analysis of senescent human fibroblasts reveals a role for AMP in cellular senescence[J]. Biochem J,2003,376(Pt 2):403-411.
[43] 胡燕燕. 芒果苷抑制UVB诱导的人皮肤成纤维细胞早衰的实验研究[D]. 南京医科大学,2014.
[44] 张芮. 丙酮酸激酶缺失诱导细胞衰老[D]. 浙江大学,2018.
[45] Robbins E, Levine E M, Eagle H. Morphologic changes accompanying senescence of cultured human diploid cells[J]. J Exp Med,1970,131(6):1211-1222.
[46] Passos J F, von Zglinicki T. Mitochondria, telomeres and cell senescence[J]. Exp Gerontol,2005,40(6):466-472.
[47] Lawless C, Wang C, Jurk D, et al. Quantitative assessment of markers for cell senescence[J]. Exp Gerontol,2010,45(10):772-778.
[48] 张家宇. Nrf2信号通路对α-硫辛酸再生谷胱甘肽的作用机制研究[D]. 华中科技大学,2017.
[49] Hariton F, Xue M, Rabbani N, et al. Sulforaphane Delays Fibroblast Senescence by Curbing Cellular Glucose Uptake, Increased Glycolysis, and Oxidative Damage[J]. Oxid Med Cell Longev,2018,2018:5642148.
[50] 石琛. 鼻咽癌中COX-2通过抑制治疗诱导的衰老促进治疗抵抗的研究[D]. 吉林大学,2018.
[51] 邢丹. 喹赛多相关锌指蛋白的表达调控与其调节基因的研究[D]. 华中农业大学,2012.
作者简介:马旗,女,硕士,研究方向:内分泌代谢。
通讯作者:冯江,E-mail: huoxingxiaoxiong@qq.com
基金项目:甘肃省卫生行业科研计划项目(GSWSKY2018-35)