中车齐齐哈尔车辆有限公司黑龙江齐齐哈尔161002
摘要:焊接残余应力的存在,会直接影响到钢混结构的承载能力。为了保证焊接结构的安全可靠,准确地推断焊接过程中的力学行为和残余应力是十分重要的。对于焊接残余应力,以往多是采用切割、钻孔等试验测量方法,不但费时费力,而且受到许多条件的限制,结果数据误差也会很大。本文结合焊接后热处理技术要点,对焊接残余应力的影响因素、危害以及消除策略等进行分析与探讨。
关键词:焊接;热处理;残余应力;影响;消除
焊接残余应力会严重影响焊接结构的使用性能,可能引起结构的脆性断裂,拉伸残余应力会降低疲劳强度和腐蚀抗力,压缩残余应力会减小稳定性极限,焊接残余应力是焊件产生变形和开裂等工艺缺陷的主要原因。由于焊接残余应力的测定程序麻烦,计算残余应力又极为复杂,因此给残余应力的研究带来了许多困难,对焊接结构的残余应力研究就显得尤为重要。
1影响焊接残余应力的主要因素
焊接过程是一个先局部加热,然后再冷却的过程。焊件在焊接时产生的变形称为热变形,焊件冷却后产生的变形称为焊接残余变形,这时焊件中的应力称为焊接残余应力。焊接应力包括沿焊缝长度方向的纵向焊接应力,垂直于焊缝长度方向的横向焊接应力和沿厚度方向的焊接应力。焊接残余应力产生的主要原因是由焊接过程中不均匀加热所引起的。焊接应力按其发生源来区分,有如下3种情况:
(1)直接应力是进行不均匀加热和冷却的结果,它取决于加热和冷却时的温度梯度,是形成焊接残余应力的主要原因。(2)间接应力是由焊前加工状况所造成的压力。构件若经历过轧制或拉拔时,都会使之具有此类残余应力。这种残余应力在某种场合下会叠加到焊接残余应力上去,而在焊后的变形过程中,往往也具有附加性的影响。另外,焊件受外界约束产生的附加应力也属于此类应力。(3)组织应力是由组织变化而产生的应力,也就是相变造成的比容变化而产生的应力。它虽然因含碳量和材料其它成分不同而有异,但一般情况下,这种影响必须要加以考虑的是,发生相变的温度和平均冷却速度。
2焊接残余应力对焊接结构的影响
(1)对结构刚度的影响当外载产生的应力。与结构中某区域的残余应力叠加之和达到屈服点o。时,这一区域的材料就会产生局部塑性变形,丧失了进一步承受外载的能力,造成结构的有效截面积减小,结构的刚度也随之降低。结构上有纵向和横向焊缝时(例如工字梁上的肋板焊缝),或经过火焰校正,都可能在相当大的截面上产生残余拉伸应力,虽然在构件长度上的分布范围并不太大,但是它们对刚度仍然能有较大的影响。
(2)对受压杆件稳定性的影响当外载引起的压应力与残余应力中压应力叠加之和达到o。,这部分截面就丧失进一步承受外载的能力,这样就削弱了杆件的有效截面积,并改变了有效截面积的分布,使稳定性有所改变。残余应力对受压杆件稳定性的影响大小,与残余应力的分布有关。
(3)对静载强度的影响如果材料是脆性材料,由于材料不能进行塑性变形,随着外力的增加,构件中不可能应力均匀化。应力峰值将不断增加,直至达到材料的屈服极限,发生局部破坏,最后导致整个构件断裂。脆性材料残余应力的存在,会使承载能力下降,导致断裂。对于塑性材料,在低温环境下存在三向拉伸残余应力的作用,会阻碍塑性变形的产生,从而也会大大降低构件的承载能力。
3焊接后热处理技术的应用机理
由于焊接热源对构件产生不均匀的加热或者冷却,同时也会引发不均匀的塑性流动,那么构件焊接之后就会产生弹塑性应变,进而引发焊接残余应力。在焊接过程中,局部热量的不均匀输入可能造成焊缝区熔化现象,在焊接区的温度与相邻区域的温度偏高,此时形成正温差,而熔池附近的高温区材料热膨胀作用受到影响,高温区材料会形成不均匀的压缩塑性变形现象。
在构件冷却的过程中,部分材料已经发生塑性变形作用,而受到周围环境、因素等制约,不能进行自由收缩,在一定程度上受到拉伸作用,产生拉应力。同时,熔池发生凝固作用,已经形成焊缝的金属受到冷却收缩作用,也会形成一定的拉力。
采取焊接后热处理技术,主要针对产生残余应力的原因,在进行焊接之前采取预热方法,减少金属试板与焊接焊缝之间的温度差,那么在焊接工程中,产生极小的原材料与焊缝不均匀变形问题;在进行冷却过程中,主要应用保温棉,此时原材料与焊缝之间的温度较为接近,材料整体冷却,形成均匀变形,产生较少的焊接残余应力。
4焊接后热处理技术的应用数值模拟
(1)温度场数值的模拟
通过采取焊后热处理技术,可确保整个焊接结构根据一定的加热速度进行升温,保持一定的时间之后,将变形金属实现再结晶,进而产生全新等轴晶粒,此时可基本消除晶体缺陷,合理控制金属的强度,提高韧性,而残余应力也因此能够释放并消除。为了更好地获取热处理过程的温度场模拟值,可将热处理过程分为不同的温度阶段,结合各个阶段的升温与降温实验,采取有限元软件对不同阶段的热源进行计算,并在模型中实行模拟运用,最终获得精确的温度场值。通过数值模拟曲线的观察,确定不同阶段的温度控制能否符合焊后热处理的标准与规范,进入保温阶段之后,接头部位的温度均符合标准。
(2)应力场数值的模拟
将焊件焊接之后的残余应力场分布状况,以初始状态导入模型中,对温度的变化过程进行记录,了解历史事件并读取各个节点的温度数据、应力数据等,将相应的数据值加载到模型中,运用热塑性理论,充分考虑温度场、组织转变场等影响作用,对焊后热处理过程的残余应力分布进行计算。为了客观了解热处理后残余应力的分布状况、数值大小等,与焊后残余应力进行对比,一般焊后残余应力的峰值在热影响区域的附近,经过采取消应力的热处理技术,残余应力的峰值有所降低,此时位置不会发生变化。当完成热处理过程之后,距离焊缝较远的原材料区域残余应力值逐渐上升,直到100Mpa左右。这主要由于受到热处理的作用,残余应力逐渐释放并重新组织、分配。对于焊接接头位置的焊后等效残余应力来说,其峰值处于内表面约10mm-12mm左右,属于打底焊道位置,该位置的坡口尺寸较小,受到一定的约束力作用,在快速冷却的状态下收缩量就会增加;当外表面的等效残余应力值达到最低点时,内表面的残余应力峰值就会增加,而采取焊后热处理技术,则可有效控制残余应力峰值,其降低幅度高达30%-50%,确保焊接残余应力处于平稳状态。
5结论
构件焊接时产生瞬时应力,焊后产生残余应力,并同时产生残余变形,这是客观规律。一般我们在制作过程中重视的是控制变形,往往采取措施来增大被焊构件的刚性,以求减小变形,而忽略与此同时所增加的瞬时应力与焊接残余应力。工程主体结构中,大部分构件均属刚性大、板材厚的构件,虽然残余变形相对较小,但同时会产生巨大的拉应力,甚至导致裂纹。在未产生裂纹的情况下,残余应力在结构受载时内力均匀化的过程中往往导致构件失稳、变形甚至破坏。本文通过分析焊接残余应力的影响因素、产生危害等,对焊接后热处理技术的应用进行探讨,最终获得如下结论:1)在进行热处理过程中,如何确定保温温度并控制温差范围,对最终的热处理效果产生直接影响,需加强重视;2)根据热弹塑性理论与有限元分析程序,充分考虑温度场与组织转变场等影响作用,通过采取三场耦合的有限元计算模式,实现焊后热处理技术的分布计算;3)运用有限元计算方法,可更加精确地掌握焊后热处理技术在残余应力分布中的影响规律,可较好地保障应力消除效果。
参考文献
[1]徐富家,吕耀辉,徐滨士.焊接快速成形金属零件的残余应力与变形[J].焊接技术,2011(1).
[2]潘华,方洪渊.局部加载拉应力对平板焊接残余应力场的影响[J].焊接学报,2008(8).
[3]李均峰,宋天民,张国福,等.逆焊接消除焊接残余应力工艺及机理研究[J].热加工工艺,2008(13).
[4]王岩,宋天民,张国福,等.逆焊接处理对不同材料抗应力腐蚀性能的影响[J].辽宁石油化工大学学报,2007(3).
[5]刘俊松,陈学东,刘全坤,等.焊接HAZ热处理后性能影响因素分析[J].热加工工艺,2012(1).
[6]孙英学,孙平.焊接残余应力有限元分析技术研究[J].核动力工程,2009(2).