穆明明
山西省太原市030051
摘要:智能变电站保护调控一体化实现各个系统的互联互通,提高变电站的继电交互能力,支持对变电站进行保护调控。智能变电站继电保护可靠性和电力系统运行的安全性与经济性息息相关,但当下智能变电站经常发生故障,迫使相关技术人员必须大力探究继电保护可靠性,保证智能变电站安全稳定运行,保证电力系统健康稳定发展。
关键词:电力系统;智能变电站;继电保护;可靠性
1导言
社会在发展进步,时代在进步,人们对电力的应用更加灵活,从古老的电灯泡到现在的电动汽车,我们可以看到时代的进步,也看到了电力对人们生活的重要性。在电力工程发展建设过程中,智能变电站的出现推动了电力事业的发展。相对与传统变电站,智能变电站有着更好的发展优势和更高的发展要求。在使用新设备和新技术的同时,提升智能变电站的安全性也十分重要,本文对智能变电站中继电保护工作中的安全性作出分析。
2智能变电站继电保护系统可靠性的分析
2.1智能变电站
在智能变电站中建立信息处理系统可以提升变电站的信息采集功能、信息传输功能以及信息处理功能。智能变电站中应用了很多数字化的网络技术,数字化技术保证了网络信息的顺畅度,在保证设备智能化水平的同时,可以发挥网络信息的应用优点,对变电系统中的配电装置进行统一控制。
智能变电站的显著特征就是一次智能化和二次网络化,这类运营方式降低了变电站的运营成本,提升了变电站的送电效率。智能变电站在应用过程中也通过智能化的工作管理方式,克服了过去变电站中互感器的饱和问题。智能变电站改变了光缆的应用方式,解决了过去存在的交直流串扰等电磁兼容问题。在智能变电站被应用过程中,继电保护装置改善了传统的变电环境,提升了带电力系统的稳定性。智能变电站的组成结构大致分为三部分,分别是变电过程层、变电间隔层、变电站控层。变电间隔层和变电站控层在对电力数据进行控制时,可以达成数据共享,优化变电站的信息处理功能,过程层在变电站中起着过度的作用,在被应用过程中,保持变电站稳定性。而智能变电站中的继电保护装置就是维护变电站的稳定性,保证智能变电中电力装置的运维安全。
2.2提高可靠性的作用
对于智能变电站来讲,其主要是利用网络技术等手段,以实现电力系统有效保护与控制,通常涉及不同类型智能设备,确保其运行具有稳定性和安全性、可靠性显得极其重要。智能变电站继电保护系统运行过程,可能会对其造成影响的因素较多,如信息质量或运行环境等,从而对继电保护系统造成不利影响。对此,为了保证智能变电站的稳定运行,需要通过科学技术的合理应用,以便于进行智能系统自我检测,同时将其数据报告送至工作人员,确保该系统具有可靠性特点。由此可见,加强智能变电站的继电保护系统可靠性,能够确保该系统的安全运行,为其安全运行提供重要保障。
3继电保护装置在智能变电站中的应用特点
3.1保护变压器
应用变压器保护法可以提升变电站中变压器的使用安全性,变压器有额定电压,当经过变压器的电流增大时,就会导致变压器中的额定电压显著上升。当变压器中的实际电压值超过变压器中的额定电压值时,就会对变压器造成破坏。由此可见,将变压器的电压值调节到额定电压以内就可以对其进行保护。
在利用配电保护装置对变压器进行保护时,需要分析装置的应用特点,将配电线路中的电压调节到额定限度之内,这样就能保证配电电压的稳定性,实现对变压器的保护。在对变压器进行保护时,通常采用分布式的保护方法配置电压,显示电路中的电压异常。在进行配电保护工作时,也可以采用独立安装法建立非电量继电保护途径,使用电缆接通路由器的方式安装继电保护装置,完成对变压器的保护。
3.2提升运维安全性
在智能变电站中应用继电保护装置可以提升用电安全性,使用网络信息技术可以对变电站内中的各个电路元件实施监控。相对的是,网络是一把双刃剑,网络的应用会增加计算机系统日常的运维风险,网络病毒的入侵也会造成智能变电站的管理异常,出现数据遗失和数据泄露的情况。对于这种现象,就需要应用过去的经验,优化继电保护系统,提升智能变电站的运维安全性。
3.3提升管理的可靠性
应用继电保护系统,提升了智能变电站中的系统保护性,对变电站进行数字化建设。合理设置继电保护装置,保证系统结构的稳定性,提高了变电运营工作管理的可靠性。智能变电站为社会上的工业生产、人们的生活等提供电量。智能变电站的日常工作容易受到外界因素的影响,所以在运维管理过程中,需要提升电子设备的稳定性和安全性,充分考虑电磁兼容问题,发挥继电保护系统的整体效果,削减不良因素,建立预警机制,及时对智能变电站中的运维异常做出反应。
4智能变电站继电保护可靠性提升策略
4.1加强变压器的保护配置
电压在经过电力系统配电线路时有限定的额度,因而电压低于或高于限定额度均会对配电效果产生严重的影响。对于智能变电站而言,变压器系统是重要的电压控制与调节装置,也是进行配电保护的重要装置之一,所以在用电压器装置进行智能变电站继电保护时,可将分布式配置应用于变压器,实现差动功能继电保护。与此同时,还可采取集中式配置的方式加强对智能变电站变压器装置的后备保护,或基于电缆和断路器的直接相连的方式进行非电量继电保护,提高智能变电站继电保护可靠性。
4.2实行电压限定延时保护
当智能变电站处于正常运行状态时,极易被电流、电压等外部因素影响,引发外部断路问题,发生过负荷电流现象。面对这样的问题,尽管过负荷电流量与正常点流量相比没有明显的差异,但此时如果正好遭遇智能变电站外部故障,就极有可能引发跳闸问题,严重影响智能变电站继电保护可靠性。
所以将电压限定延时方法应用于智能变电站电压线路,就可将通过各个线路的电流量精确测量出来,一旦发生过负荷电流现象,能及时将警报发送到相关系统并及时执行保护命令,显著提升继电保护可靠性。
4.3落实线路保护配置工作
线路保护配置对于电力系统有十分重要的作用,不仅能有效控制和保护系统里各级电压的间隔单元,还具有保护、控制、测量、通信监视等多种功能。通过落实智能变电站继电保护线路配置工作,可让电力系统里的变电站、发电厂、高低压配电等获得有效的、完善的配电线路控制保护方案,保证电力系统运作的安全与稳定,大大提升继电保护可靠性。所以相关人员平时应注重落实电力系统线路保护配置工作,基于纵差联动方法有效保护电力系统中的大多数线路保护装置。这主要分为集中式与后备式两种线路配置保护方式,通过采取这两种方式就能及时处理智能变电站线路保护配置问题,确保正常发挥各项功能,增强电力系统供电可靠性。
5结束语
总之,智能变电站中的变电保护系统决定了变电站的运营安全性,在设置继电保护系统过程中,需要考虑智能变电站运营的综合性因素,合理有效的设置智能终端和交换机等器械元件。这样就能在进行设计继电保护系统过程中,对电路元件进行更新设计,保证继电保护系统管理工作的安全性。智能变电站的发展应用为社会带来了良好的经济效益,而智能化的信息技术也提升了继电保护系统的工作效果,这使智能变电站在被应用过程中变得更加可靠。
参考文献:
[1]刘立伟.智能变电站继电保护系统可靠性分析[J/OL].电子技术与软件工程,2017,(21):234.
[2]高保泰.关于智能变电站继电保护系统可靠性的探讨[J].科技展望,2016,26(24):123.
[3]赵一园.基于GO法的智能变电站继电保护系统可靠性研究[D].华北电力大学(北京),2016.