赵现伟
聊城华鑫公路勘察设计有限责任公司山东聊城252000
摘要:在公路桥梁设计中大跨度桥梁设计难度大,技术要求高。在社会经济不断发展和人们生活水平不断提高的今天,公路桥梁设计质量开始为更多人所关注。为了能够全面提高公路桥梁质量,为社会经济建设与人们生产生活提供更加优质的服务,深入研究公路桥梁中大跨度桥梁的设计应用是非常必要的。本文以此为内容进行几个方面的具体分析。
关键词:公路桥梁;大跨度桥梁;设计
1.大跨度桥梁结构及其设计理论的发展
随着我国经济的发展,大跨径桥梁的建设在20世纪末进入了一个高潮。大跨度桥梁形式多样,有斜拉桥、悬索桥、拱桥、悬臂桁架桥及其它的一些新型的桥式,如全索桥,索托桥,斜拉2悬吊混合体系桥、索桁桥等等。其中,悬索桥和斜拉桥是大跨径桥梁发展的主流。近20年来发展最快的大跨径桥梁是斜拉桥,而遥遥领先的是悬索桥。当前世界最大跨度的悬索桥是1998年建造的日本明石海峡大桥,其主跨度为1991m;世界最大跨度的斜拉桥是1999年建造的日本多多罗桥,其主跨度为890m;而中国最大跨径的悬索桥是江苏润杨长江公路大桥,主跨度1490m,在世界悬索桥行列中位居第三;中国最大跨径的斜拉桥为江苏南京长江第二大桥,主跨度628m,在世界钢箱梁斜拉桥中位列第三;湖北荆州长江公路大桥,主跨径达500m,在世界预应力混凝土斜拉桥中位列第二。目前的桥梁技术已经能较好的解决现存问题,但是随着桥梁跨度不断增大,向着更长、更大和更柔方向发展,为了保证其可靠性、耐久性、行车舒适性、施工简易性和美观性及其统一还有大量的工作要作。
桥梁工程结构设计的过程也就是如何处理桥梁结构的安全性(可靠性、耐久性)、适用性(满足功能要求及行车舒适性)、经济性(包括建设费用和维修养护费用)及美观性的过程。传统的桥梁结构设计,要求设计者根据设计要求和实践经验,参考类似的桥梁工程设计,通过判断去构思设计方案,然后进行强度、刚度、和稳定等各方面的计算。但由于设计者经验的限制,确定的最终方案往往不是理想的最优方案,而仅为有限个方案中接近最优的可行方案。桥梁结构优化理论是传统桥梁结构设计理论的重大发展,也是现代桥梁设计的目标。它是使所有参与设计计算的量部分以变量出现,在满足规范和规定的前提下,形成全部结构设计的可行方案域,并利用数学手段,按预定的要求寻求最优方案。
2.大跨度桥梁的优化设计
2.1索塔的结构优化
在公路桥梁的施工过程中,优化大跨度桥梁设计中,对索塔的结构进行优化是优化内容的一部分。对索塔的优化,主要是对塔的受力合理性和塔高进行优化。如果塔太高,在施工中会增加施工难度,并且加大工程造价成本;如果塔太低,拉索的工作效率会降低,拉索和主梁的受力也会增加。所以,如果单独优化塔高是不经济的,需要结合其它部分综合考虑。同时,需要重视对塔的结构形式、缆索锚固形式、塔的受力合理性、缆索形式和锚固点的分布等的设计,才能保证大跨度桥梁设计的合理性。
2.2斜拉索或者主缆的动力优化
目前,公路桥梁的设计施工中,大跨度桥梁的设计出现了很多新型的桥式,例如全索桥、斜拉-悬吊混合体系等。这些新型的桥式存在共同的特点,就是全部都由缆索支承,并且桥面比较柔,属于柔性结构。在应用拉索的过程中,受到外部的激励,会发生一些大幅的振动。例如,出现风雨天气的时候,发生的风雨振现象,拉索和主梁之间的耦合振动,会引起数据共振和拉索的自激振动等。而拉索产生大幅度的振动,很容易造成拉索锚固端的疲劳,导致拉索的使用寿命降低。情况严重时,甚至会对桥梁的安全造成一定的威胁。所以,在大跨度桥梁的优化设计过程中,需要重视对动力问题的设计。
3.公路桥梁大跨度结构设计的应用
3.1简支空心板结构桥型的应用
公路桥梁的大跨度桥梁设计,还包括对大跨度桥梁结构的设计,选择上部构造形式的时候,应该根据公路桥梁的实际施工情况,对其受力特点、经济性和施工技术难度等进行综合考虑。简支空心板结构的桥型,相对来说,具有成熟的施工技术,在施工的时候比较方便;但是这种桥型的跨径比较小,梁高大。因为桥梁的跨径受到一定的限制,容易造成跨沟桥梁高跨比不协调,不能发挥良好的美观性。上部构造不能符合公路桥梁路线中超高线和小半径,并且高墩的数量增加,桥面中出现了较多的伸缩裂缝,桥梁的行驶条件比较差。所以,在具有较大跨度的山区中,这种桥型一般都在填土不高和地形相对平缓的高、中、小桥中。
3.2预制拼装多梁式T梁的应用
预制拼装多梁式T梁在中等跨径桥中应用,具有方便施工和节约工程造价的特点,比整体式箱梁的工程造价低。在中等跨径直梁桥中,预制拼装多梁式T梁是一种应用比较广泛的大跨度桥梁结构。但是,相对于曲线梁来说,T梁属于开口断面,抗扭及梁体平衡受力能力均箱梁差,曲梁的弯矩作用会对建筑下部产生较大的不平衡力。但是,当曲线桥中的弯曲程度比较小的时候,曲线T梁桥应用直梁设计,通过翼缘板的宽度实现对平面线形的调整,可以减少曲梁的弯扭作用。在一定的程度上,可以对曲线T梁桥在施工和受力上的不足进行有效的弥补。虽然曲线桥的直线设置部分会受到恒载和活载不平衡的影响,存在变位曲线,但是相对于曲线梁来说比较小。所以,大跨度桥梁的设计过程中,可以应用加强横向联系的措施,以提高公路桥梁结构的整体性。但是,如果桥梁的跨经度较大,最适宜已经用悬臂浇筑箱梁。对于中等跨径的桥梁,不论应用哪一种施工方式进行箱梁桥施工,都会产生较高的费用,相对来说,预制拼装多梁式T梁具有更好的应用。
3.3下部结构设计
下部结构应能满足上部结构对支撑力的要求,同时在外形上要做到与上部结构相互协调、布置均匀。桥墩视上部构造形式及桥墩高度采用柱式墩、空心薄壁墩或双薄壁墩等多种形式。柱式墩是目前公路桥梁中广泛采用的桥墩形式,其自重轻,结构稳定性好,施工方便、快捷,外观轻颖美观。对于连续刚构桥,要注意把握上下部结构的刚度比,减小下部结构的刚度比,减小下部结构的刚度,可减小刚结点处的负弯矩,同时减小桥墩的弯矩,也可减小温度变化所产生的内力。但是桥墩也不可以太柔,否则会使结构产生过大变形,影响正常使用,并不利于结构的整体稳定性。对于高墩,除了要进行承载能力与正常使用极限状态验算外,还要着重进行稳定分析。对于连续梁结构或连续刚构桥,各墩的稳定性受相邻桥墩的制约影响,应取全桥或至少一梁作为分析对象。稳定分析的中心问题就是确定构件在各种可能的荷载作用和边界条件约束下的临界荷载,下面以连续梁为例进行说明。介于梁、墩之间的板式橡胶支座,梁体上的水平力H(车辆制动力和温度影响力等)是通过支座与梁、墩接触面上摩阻力而传递给桥墩的,它不但使墩顶产生水平位移,而且板式橡胶支座也要产生剪切变形。当梁体完成水平力的传递以后,梁体暂时处于一种固定状态,但由于轴力及墩身自重的影响,墩顶还会继续产生附加变形,这就使得板式支座由原来传递水平力的功能转变为抵抗墩顶继续变形的功能,支座原来的剪切变形先恢复到零,逐渐达到反向的状态。
结语
公路桥梁的施工过程中,大跨度桥梁的设计具有重要的作用,是影响公路桥梁施工质量和使用寿命的一项关键因素。在设计大跨度桥梁的时候,实现对大跨度桥梁的优化设计和结构设计,才能保证设计作用的全面发挥。
参考文献:
[1]朱剑.大跨度桥梁设计在公路桥梁中的应用[J].民营科技,2012(12):203~205.
[2]卢剑桥.山区公路大跨度桥梁设计关键问题的探讨[J].科技创新导报.2012.(14):53~55.