程玉习
身份证号码:41092819851010xxxx
摘要:在建筑工程的快速发展下,相关检测技术水平也得到了明显提升。只有采用合适的检测方法,随时掌握建筑工程的施工质量,才能让工程顺利通过竣工验收,并为实际使用安全提供保障。针对以往部分检测项目容易对样品造成损害的问题,无损检测技术的应用受到了关注,而且技术种类也逐渐增多,有必要对其进行系统研究。
关键词:建筑工程检测;无损检测技术;应用
1导言
随着科学技术的发展,越来越多的新技术和新材料被应用到建筑工程当中,提高了建筑工程的施工质量。无损检测技术作为一种全新的建筑工程检测技术,不仅检测的准确度较高,符合建筑工程质量检测的要求,而且在检测中不会损伤建筑物的内部结构,备受建筑施工企业的青睐。研究分析无损检测技术在建筑工程检测中的应用具有重要现实意义。
2无损检测技术概述
2.1无损检测技术
无损检测技术是利用如电、光、声等技术手段对建筑物的结构进行检测,在检测中能够避免与建筑物直接接触,有效减少了对建筑结构的破坏。现阶段,无损检测技术主要对建筑物的管道焊接、设备、材料以及构件等进行质量监测,利用热、光、电等效能反应情况,参考各种标准数据对建筑工程中的质量问题程度进行评定,从而帮助相关工作者准确掌握建筑工程的质量,以便及时采取有效措施解决质量问题。
2.2无损检测技术的应用优势
无损检测技术广泛利用声、光、磁、电等的特性,在不损害检测对象的前提下,有效检测出检测对象是否存在缺陷,在计算机技术的配合下,能够准确提供检测对象缺陷类型、位置、严重程度、数量等方面的信息。无损检测技术的研究和应用水平在一定程度上代表着工程检测技术水平的发展,是目前工程检测技术的主要发展方向。通过与计算机技术、传感器技术、大数据等信息处理技术相结合,使其拥有传统检测技术无法比拟的优势。传统检测技术需要对现场进行勘测,多采用钻孔技术等创造检测条件、获取检测样品,而且检测范围较小,检测结果的代表性不足。无损检测技术的前期准备工作少,能够有效缩短检测周期,不需要钻孔取样,避免对工程结构造成二次破坏。在信息化技术的辅助下,可以采用多种方式呈现检测结果,方便对检测结果的判断和利用。因此,无损检测技术的应用同时具有安全、高效、检测周期短、成本低、负面影响小等优势。
3建筑工程检测中无损检测技术的应用
3.1超声波技术
无损检测技术已经在建筑工程中得到了较为广泛的应用,其中,超声波技术是建筑工程最常用的一种无损检测技术。在检测过程中需要使用的仪器设备包括超声波仪和超声波接收仪等。在检测过程中,超声波仪向待测目标发出超声波,与待测目标接触后,会产生反射波。超声波接收仪在捕捉到反射波形后,可根据其速度、路径等变化,判断待测目标表面平整度、强度等参数是否符合设计要求。整个检测过程较为简单,超声波接收仪会自动对反射波进行采集和记录,通过与计算机软件连接,自动完成反射波波形的分析工作,最后得出详细的检测结果,为检测技术人员提供参考。比如利用超声波无损检测技术检测建筑混凝土结构性能,超声脉冲能够以2万Hz以上的频率穿透混凝土,根据反射波判断混凝土结构是否存在裂缝等缺陷问题。但超声波检测技术的应用也存在一定局限性,如果待测对象为结构复杂、精细度较高的构件,接收到的反射波则会出现杂乱无章的现象,进而无法对其是否存在缺陷、缺陷详细信息进行判定。因此,超声波技术多应用于桩基等结构较为简单的构件检查。
3.2渗透无损检测技术
在建筑工程施工过程中,会使用大量的金属、钢铁、导电材料等,为有效检测此类材料的施工质量,需要采用渗透无损检测技术。在实际检测过程中,首先施工企业需要根据建筑工程的实际情况,选择相对应的监测模式和特定的吸附材料,例如色料、荧光料等;然后将其涂抹在需要检测的区域或者构件上,如果所检测构件本身存在缺陷问题,渗透液会迅速进入缺陷口中;最后,去除表面渗透材料,待检测区域或构件干燥后,就可以清晰掌握目标的缺陷情况。
3.3涡流检测技术
涡流检测技术在应用时是通过使用电磁感应的原理来进行的。电磁感应的发生形成了涡流现象,从而有效应用它来检测建筑内部的性能和内部结构等。为了确保在检测时可以更加及时准确的寻找到目标,需保证使用的线圈具有多种形式。涡流检测技术在实际应用时,检测速度更快、操作较简单所需成本较低,而且可以借助多种形式的线圈,来明确建筑的结构和特点。涡流检测技术主要被运用于建筑工程中的以下两方面:一是在检测建筑工程的内部结构,判断其是否存在缺陷时,可以在依据建筑工程材料产生电磁反应的情况下,来分析建筑工程的内部结构,判断施工材料的密度等来完成。二是可以通过探知线圈来检测出钢铁、金属制品等具有导电性能的物质,从而据此来有效检测和区分建筑材料在细微方面和深层方面的差别,从而提高对建筑材料质量评价的准确性能。
3.4冲击回波技术
冲击回波检测技术的原理与回弹检测有相似之处,都要对待测目标实施撞击,但冲击回波技术是依靠撞击应力波对待测目标的缺陷问题进行检测和判断。从这一角度来看,又与超声波检测具有一定相似之处。在应用冲击回波技术时,也可以借鉴回弹检测和超声波检测的经验。从其实施过程来看,首先要根据对待测目标的强度预估结果,结合尺寸规格方面的考虑,制作检测试验用钢珠。将钢珠以适当的力度弹射到待测目标表面,与待测目标撞击后,会产生应力波,并沿单侧目标结构内部延伸。如果应力波遇到裂缝等结构异常部分,会产生异常的反射波形,最后可采用频谱分析方法得到待测目标的缺陷信息。
3.5红外检测技术
该技术主要利用红外成像原理,根据待测目标内部热能损失情况,对待测目标的缺陷问题进行检测。需要使用的设备主要包括红外线发射装置、接收装置及相关电子设备。目前该技术主要用于检测建筑混凝土结构缺陷,接收到红外辐射信号后,通过对其进行分析处理,转换为混凝土结构温度场分布图像,帮助检测技术人员直观的判断混凝土结构是否存在缺陷。比如在实际检测过程中,可采用红外线摄像电子设备,获取混凝土敷设信号,然后对其进行科学处理,得到混凝土温度场分布图像。再由检测技术人员对混凝土结构质量进行判断,评价其质量水平。虽然红外检测技术还不够成熟,但由于其不需要与建筑结构发生直接接触,可将对建筑的损害降至最低,而且支持远程操作处理,使用较为方便,也是目前非常具有潜力的一种无损检测技术。
3.6雷达波无损检测技术
作为微波检测技术的一种,雷达波当前在医疗、通讯等领域得到了广泛应用。在建筑工程检测过程中,利用雷达波技术的高穿透力特点,可以有效提高检测工作范围,实现对混凝土结构、钢筋位置判断的精准检测。通常情况下,工作人员只需向目标区域发射雷达波,通过分析雷达波的发射方向与速度变化,就可以准确掌握目标区域混凝土结构是否存在裂缝分层、脱粘等问题。
4结论
综上所述,无损检测技术具有多方面的应用优势,在建筑工程中的应用范围十分广泛。通过对目前常用的超声波技术、回弹技术、红外技术等无损检测技术进行分析,可以明确其适用范围及检测效果。通过合理选择无损检测技术,控制好技术操作过程,能够满足大部分建筑工程实际检测工作的需求。
参考文献
[1]吴粤聪.无损检测技术在建筑工程检测中的应用[J].广东建材,2018,34(04):26-28.
[2]王晨.无损检测技术在建筑工程检测中的应用研究[J].建材与装饰,2018(16):58-59.
[3]张洪国.无损检测技术在建筑工程检测中的应用[J].居舍,2018(15):71.
[4]张勇,唐国龙.建筑工程检测中无损检测的有效运用[J].黑龙江科技信息,2016(13):262.