浅谈混凝土裂缝的成因和控制措施

(整期优先)网络出版时间:2012-09-19
/ 2

浅谈混凝土裂缝的成因和控制措施

张婷

张婷南昌市建筑工程集团有限公司

摘要:泵送混凝土因本身的工艺特点及施工工艺等因素造成裂缝普遍存在现象,在很大程度上影响结构的抗渗和耐久性能,应该引起足够重视。现根据工程应用实践及国家现行施工规范要求,对泵送混凝土裂缝的产生原因及预防措施进行分析。

关键词:泵送混凝土裂缝防治

1、温度裂缝的成因及控制

1.1温度裂缝产生的原因水泥水化是一个放热的化学反应过程,其间产生一定的水化热。每克水泥放出502J的热量,如果以水泥用量300~550kg/m3来计算,每1m3混凝土将放出15500~27500KJ的热量,且大部分水泥水化热在3d内释放出来。混凝土是热的不良导体,特别是大体积混凝土,产生的大量水化热不容易散发,内部温度不断上升,而混凝土表面散热快,使混凝土内外截面产生温度梯度,特别是昼夜温差大时,内外温度差别更大,内部混凝土热胀变形产生压力,外部混凝土冷缩变形产生拉力,由于此时混凝土拉抗强度较低,当混凝土内部拉应力超过其抗拉强度时,混凝土便产生裂缝。这种裂缝的特点是裂缝出现在混凝土浇筑后的3~5d,初期出现的裂缝很细,随着时间的发展而继续扩大,甚至达到贯穿的情况。

1.2温度裂缝的控制措施混凝土内部的温度与混凝土厚度及水泥品种、水泥用量有关。混凝土越厚,水泥用量越大,水化热越高的水泥,其内部温度越高,形成温度应力越大,产生裂缝的可能性越大。对于大体积混凝土,其形成的温度应力与其结构尺寸相关,在一定尺寸范围内,混凝土结构尺寸越大,温度应力也越大,因而引起裂缝的危险性也越大,这就是大体积混凝土易产生温度裂缝的主要原因。因此防止大体积混凝土出现裂缝最根本的措施就是控制混凝土内部和表面的温度差。减少温差的措施是选用中热硅酸盐水泥或低热矿渣硅酸盐水泥,在掺加泵送剂或粉煤灰时,也可选用矿渣硅酸盐水泥。此外,可充分利用混凝土后期强度,以减少水泥用量。因此,为更好的控制水化热所造成的温度升高、减少温度应力,可以根据工程结构实际承受荷载的情况,对工程结构的强度和刚度进行复核与验算,并取得设计单位的同意后,可用56d或90d抗压强度代替28d抗压强度作为设计强度。由于过去土木建筑物层数不多、跨度不大,且多为现场搅拌,施工工期短,混凝土标准试验龄期定为28d,但对于具有大体积钢筋混凝土基础的高层建筑,大多数的施工期限很长,少则1~2年,多则4~5年,28d不可能向混凝土结构,特别是向大体积钢筋混凝土基础施加设计荷载,因此将试验混凝土标准强度的龄期推迟到56d或90d天是合理的,正是基于这点,国内外许多专家均提出这样建议。如果充分利用混凝土的后期强度,则可使每1m3混凝土的水泥用量减少40~70kg左右,则混凝土温度相应降低4~7℃。另一方面,应当严格控制混凝土的出机温度和浇筑温度。对于出机温度和浇筑温度的控制,《混凝土质量控制标准》(GB50164—92)中明确规定:高温季节施工时,混凝土最高浇筑温度,不宜超过35℃.为了降低混凝土的出机温度和浇筑温度,可以采取下面的办法:①降低原料温度,每1m3混凝土中集料所占重量最大,所以最有效的办法是降低集料温度。在气温较高时,为了防止太阳直接照射,可以在砂石堆场搭设简易遮阳棚,必要时可向集料喷淋雾状水,或者在使用前用冷水冲洗集料;②在搅拌混凝土时加冰块冷却;③生产砼时避开当天高温时段;④对搅拌运输车罐体、泵送管道采取保温、冷却措施。

2、干缩裂缝的成因及控制

2.1干缩裂缝产生的原因混凝土浇注后仍处于塑料性状态时,由于表面水分蒸发过快而产生的裂缝。这类裂缝多在表面出现。形状不规则。长短不一,呈龟裂状深度一般不超过50mm,但薄板结构如果混凝土中掺加有含泥量大的粉砂则可能穿透。此类裂缝的主要原因,是混凝土浇注后3~4小时左右其表面没有被覆盖,特别是平板结构在炎热或大风干燥天气条件下,混凝土表面水分蒸发过快,或者是被基础、模板吸水过快,以及混凝土本身的高水化热等原因造成混凝土产生急剧收缩,而此时混凝土强度几乎为零,不能抵抗这种变形力而导致开裂,从混凝土中蒸发和被吸收水分的速度越快,干缩裂缝越易产生。而预拌混凝土公司为了满足施工现场的可泵性、流动性,其出机混凝土坍落度和砂率较大,加之夏季高温中为降低坍落度损失,以及大体积混凝土中均掺缓凝剂,早期强度较低,所以水分特别容易散失,表面容易形成裂缝。

2.2干缩裂缝的控制措施干缩裂缝的防止措施主要包括以下几点:①合理选择水泥品种。一般来说,水泥的需水量越大,混凝土的干燥收缩越大,不同水泥混凝土的干燥收缩按其大小顺序排列为:矿渣硅酸盐水泥、普通硅酸盐水泥、中低热水泥和粉煤灰水泥。所以,从减少收缩的角度出发,宜采用中低热水泥和粉煤灰水泥。②控制水泥用量。混凝土干燥收缩随着水泥用量的增加而增大,但是增加量不显著。在有可能减少水泥用量时,还是尽可能降低水泥用量,因为泵送混凝土的水泥用量偏高,C20~C60混凝土的水泥用量一般约为250~500kg/m3。③用水量的把握。混凝土的干燥收缩受用水量的影响最大,在同一水泥用量条件下,混凝土的干燥收缩和用水量成正比、为直线关系;当水泥用量较高的条件下,混凝土的干燥收缩随着用水量的增加而急剧增大。综合水泥用量和用水量来说,水灰比越大,干燥收缩越大。④最佳砂率的确定。混凝土的干燥收缩随着砂率的增大而增大,但增加的数值不大。泵送混凝土宜加大砂率,但不是笼统的和无限的,也应在最佳砂率范围内,可以通过理论计算和工程实践确定。⑤化学外加剂的选用。掺加减水剂、泵送剂,特别是同时掺加粉煤灰的双掺技术不会增大干燥收缩,但是对于某些减水剂、泵送剂,尤其是具有引气作用时,有增大混凝土干燥收缩的趋势。因此在选用外加剂时,必须选用干燥收缩小的减水剂或泵送剂。⑥正确选择养护时间和方法。混凝土浇筑面受到风吹日晒,表面干燥过快,产生较大的收缩,受到内部混凝土的约束,在表面产生拉应力而开裂。如果混凝土终凝之前进行早期保温保湿养护,对减少干燥收缩有一定作用。

3、小结

泵送混凝土梁出现的裂缝常常是非荷载因素造成的,由于混凝土的收缩而造成裂缝形成是其中最主要的一个原因。要有效地提高混凝土构件的抗裂性能,在施工中应优化混凝土配合比,加强对原材料质量的控制,选用水化热小和收缩小的水泥及严格控制砂、石子的含热量,加强对混凝土浇筑和养护的管理,加强振捣,提高混凝土的密实性和抗拉强度。设计中应重视构造钢筋的作用,对泵送混凝土梁应加强梁的腰筋,从构造措施上约束和限制混凝土的收缩。