谈配电无功补偿装置的选取

(整期优先)网络出版时间:2019-11-22
/ 3

谈配电无功补偿装置的选取

谢亚云

山西临汾汾西供电公司山西临汾031500

摘要:随着现代电力电子技术与国民经济的进一步发展,电力用户对供电电能质量水平和用电可靠性提出了更高更多的要求。由此产生了一些静止形态的动态无功补偿装置。电力电子装置不仅可以发送而且还可以吸收无功功率,其本身也成为产生无功的功率源。但动态补偿的技术目前还不成熟。

关键词:配电系统;动态无功补偿装置

一、配电系统中的动态无功补偿装置

无功功率补偿,简称无功补偿,在电力供电系统中起到提高电网的功率因数的作用,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网供电质量提高。反之,如选择或使用不当,可能造成供电系统的电压波动,谐波增大等诸多不利于电网安全运行的因素。无功补偿分动态和静态两种方式。静态无功补偿是根据负载情况安装固定容量的补偿电容或补偿电感,动态补偿是根据负载的感性或容性变化随时的切换补偿电容容量或电感量进行补偿。一般的补偿是有级的,也就是常用的补偿装置如电容,是按组来进行投切的,也就是用电系统里产生的无功不会是你补偿的一样多,但是由于这种补偿已经将功率因数达到了例如0.95,已经很好了。但是有的负载,其工作时无功的变化量非常大,且速度非常快,可以达到毫秒级,如电焊机,一个工作周期才0.2秒左右,其间还有几十秒的半负荷及几十秒的停顿,而无功在工作时也是不规则的快速改变着。象这样的负载采用常用的无功补偿装置是无法实现的,只能用“动态”补偿。

动态无功补偿装置由高压开关柜(包括高压熔断器、隔离开关、电流互感器、继电保护、测量和指示部分等)、并联电容器、串联电抗器、放电线圈(或者电压互感器)、氧化锌避雷器、支柱绝缘子、框架等构成。动态无功补偿装置根据改善和提高功率因数,降低线路损耗,充分发挥发电、供电设备的效率功能强大,液晶字段显示,性能可靠稳定,抗干扰能力极强。靠无功控制器根据线路力率情况自动投、切补偿量,以确保功率因数基本恒定于某一设定值附近;后者表示手动投入固定值补偿量,不随线路力率情况改变补偿量,此类方式除非补偿量刚好合当,功率因数才会达标。

无功功率补偿控制器有三种采样方式,功率因数型、无功功率型、无功电流型。功率因数型这种控制方式也是很传统的方式,采样、控制也都较容易实现。无功功率(无功电流)型的控制器较完善的解决了功率因数型的缺陷,有很强的适应能力,能兼顾线路的稳定性及检测及补偿效果。用于动态补偿的控制器要求就更高了,一般是与触发脉冲形成电路一并考虑的,要求控制器抗干扰能力强,运算速度快,更重要的是有很好的完成动态补偿功能。

二、动态无功补偿装置最优利用方法与原理功能

配电线路无功补偿即通过在线路杆塔上安装电容器实现无功补偿。线路补偿点不宜过多,一般不采用分组投切控制;补偿容量也不宜过大,避免出现过补偿现象;保护措施也要一切从简,可采用熔断器或者避雷器作为过流和过压保护。线路补偿方式这种方式具有投资小、回收快、便于管理和维护等优点,适用于功率因数低、负荷重的长线路。

在低压三相四线制的城市居民和农网供电系统中:由于用电户多为单相负荷或单相和三相负荷混用,并且负荷大小不同和用电时间的不同。所以,电网中三相间的不平衡电流是客观存在的,并且这种用电不平衡状况无规律性,也无法事先预知。导致了低压供电系统三相负载的长期性不平衡。对于三相不平衡电流,电力部门除了尽量合理地分配负荷之外几乎没有什么行之有效的解决办法。

电网中的不平衡电流会增加线路及变压器的铜损,还会增加变压器的铁损,降低变压器的出力甚至会影响变压器的安全运行,最终会造成三相电压的不平衡。

调整不平衡电流无功补偿装置,有效地解决了这个难题,该装置具有在补偿线路无功的同时调整不平衡有功电流的作用。其理论结果可使三相功率因数均补偿至1,三相电流调整至平衡。实际应用表明,可使三相功率因数补偿到0.95以上,使不平衡电流调整到变压器额定电流的10%以内。

工作原理:无功动态补偿装置由控制器、过零触发模块、晶闸管、并联电容器、电抗器、放电保护器件等组成。装置实时跟踪测量负荷的电压、电流、无功功率等,通过微机进行分析,然后计算出无功功率并与预先设定的数值进行比较,自动选择能达到最佳补偿效果的补偿容量并发出指令,由过零触发模块判断双向可控硅的导通时刻,实现快速、无冲击地投入并联电容器组。

目前,国内的动态补偿的控制器和国外的同类产品相比还要有很大的差距,一方面是补偿功率不能一步到位,冲击电流过大,系统特性容易漂移,维护成本高;另一方面是在动态响应时间上较慢,动态响应时间重复性不好。另外,相应的国家标准也还没有达到一定标准,这方面落后于发展。但是运算速度快,抗干扰能力强,最重要的是有很好的完成动态补偿功能。

无功补偿的具体实现方式:把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,能量在两种负荷之间相互交换。这样,感性负荷所需要的无功功率可由容性负荷输出的无功功率补偿。

动态无功率补偿装置的主要功能:1、提高线路输电稳定性;2、维持受电端电压,加强系统电压稳定性;3、补偿系统无功功率,提高功率因数,降低线损,节能损耗;4、抑制电压波动和闪变;5、抑制三相不平衡。

动态无功率补偿装置的主要问题:1、电容器损坏频繁。2、电容器外熔断器在投切电容器组及运行中常发生熔断。3、电容器组经常投入使用率低。

三、配电无功补偿装置的选型分析

(一)常见的无功补偿装置

同步调相机,只输出无功电流。因为不发电,因此不需要原动机拖动,没有启动电机的,没有轴伸,实质就是相当于一台在电网中空转的同步发电机,在过励磁运行状态下,向电力系统供给无功,在欠励磁运行状态下,从电力系统吸取无功功率。调相机容量大、对谐波不敏感,并且具有当电网电压下降时输出无功电流自动增加的特点,因此调相机对于电网的无功安全具有不可替代的作用

电力电容器成套补偿装置。这种装置将电力电容器及其控制、保护电器按一定接线连接起来的成套装置,具有安装方便、建设周期短、造价低、投资少、运行维护简便、损耗小等优点。

静止无功补偿装置。简称静补,用于补偿系统动态工作情况下所需无功功率。

并联电容补偿,是在线路中接入并联连接的设备,用于向线路中提供容性的无功电流。它的主要作用是就近向负荷供给无功,可以抵消感性无功电流。在提高用电功率因数、改善电压质量、降低线路损耗。它具有运行简便、经济可靠等优点,是主要的负荷补偿的装置。

(二)无功补偿的分类

变电站集中补偿,为分级平衡电网的无功,在变电站进行集中补偿,补偿装置包括并联电容器、同步调相机、静止补偿器等,其作用是提高电网的功率因数,改善系统终端变电站的母线电压,补偿变电站主变压器和高压输电线路的无功损耗。这些补偿装置一般集中接在变电站10kV母线上,因此具有管理容易、维护方便等优点,缺点是这种补偿方式对配电网的降损作用非常小。

配电线路补偿,是通过在线路杆塔上安装电容器实现无功补偿。线路补偿点不宜过多;控制方式应从简,一般不采用分组投切控制;补偿容量也不宜过大,避免出现过补偿现象;保护也要从简,可采用熔断器和避雷器作为过流和过压保护。线路补偿方式主要提供线路和公用变压器需要的无功,该种方式具有投资小、回收快、便于管理和维护等优点,适用于功率因数低、负荷重的长线路。线路补偿一般采用固定补偿,因此存在适应能力差,重载情况下补偿度不足等问题。

随机补偿,是将低压电容器组与电动机并接,通过控制、保护装置与电动机同时投切的一种无功补偿方式。许多配电网中有很大一部分的无功功率消耗在电动机上,因此,搞好电动机的无功补偿,使其无功就地平衡,既能减少配电线路的损耗,同时还可以提高电动机的出力。随机补偿的优点是用电设备运行时,无功补偿装置投入;用电设备停运时,补偿装置退出。更具有投资少、占位小、安装容易、配置方便灵活、维护简单、事故率低的特点。适用于补偿电动机的无功消耗,以补励磁无功为主,可较好的限制配电网无功峰荷。年运行小时数在1000h以上的电动机采用随机补偿较其他补偿方式更经济。

(三)需要注意的问题

与配电变压器相比,低压补偿装置的维护量无疑要高很多;控制系统越复杂、功能越多,维护工作量越大。低压补偿装置的可靠性在开关和电容器,电容器寿命与工作条件有关,因此装置的投切开关是关键。

对配电台变的补偿控制,有多种类型和不同功能的产品可供选择。城网台变多以无功补偿为主,很多要求有综合监测功能。建议根据实际需要和使用场合,合理选择功能适用、价位合理的产品。

很多专变补偿装置根据电压控制电容器补偿无功量,这种方式有助于保证用户的电压质量,但对电力系统无功补偿不可取。电网的电压水平是由系统情况决定的。若只按电压高或低控制,无功补偿量可能与实际需求相差很大,容易出现无功过补偿或欠补偿。从电网降低网损角度,取无功功率为控制量是最佳控制方式。

无功倒送会增加线路和变压器的损耗,加重线路供电负担。为防止三相不平衡系统的无功倒送,应要求控制器检测、计算三相无功投切控制。固定补偿部分容量过大,容易出现无功倒送。一般动态补偿能有效避免无功倒送。

系统三相不平衡同样会增大线路和变压器损耗。对三相不平衡较大的负荷,比如机关、学校等单相负荷多的用户,应考虑采用分相无功补偿装置。

谐波影响会使电容器过早损坏或造成控制失灵,谐波放大会使干扰更加严重。工程中应掌握用户负荷性质,必要时应对补偿系统的谐波进行测试,存在谐波但不超标可选抗谐波无功补偿装置,而谐波超标则应治理谐波。

总之,以现在的经济发展与科学前景来说,配电系统中的动态无功补偿装置技术还不太成熟,但是发展前景可观,有很大的利用价值,性价比高。

参考文献:

[1]戴晓亮.无功补偿技术在配电网中的应用[J].电网技术,1999,23(6):11-14.

[2]曹光祖.应系统地重视分散和终端无功补偿[J].低压电器,1999,(5):27-30.