垃圾焚烧厂渗沥液处理技术的研究

(整期优先)网络出版时间:2018-12-22
/ 2

垃圾焚烧厂渗沥液处理技术的研究

孔洋

北京北发建设发展有限公司北京市100000

摘要:随着我国社会经济建设的快速发展,城市生活垃圾排放量日益增加,对于生活垃圾的处置采用焚烧的形式也越来越多,同时垃圾焚烧厂与生活垃圾填埋场一样,也面临着垃圾渗滤液的处置问题。垃圾渗滤液中含有大量金属离子、氨氮等污染物及有毒有机污染物,且浓度变化往往很大,水质十分复杂,而垃圾焚烧厂渗滤液与填埋场渗滤液特性有较大的区别,在处置上也存在一定的差异性。为此,本文重点探讨了垃圾焚烧厂渗沥液处理技术。

关键词:垃圾焚烧厂;渗沥液;渗沥液处理

焚烧法是处理生产生活垃圾的重要方法,通常在焚烧前需要将垃圾倒入储坑停留3-5d以便全面发酵熟化,以沥出垃圾水分、提升燃值,以确保后续焚烧处理正常运行,所以会产生渗沥液。而渗沥液很有大量有机物、氨氮类污染物,且含一定毒性物质,如不得到及时有效处理,则会对焚烧厂周边的地下水、地表水及土壤造成污染。为此,需要对此种渗沥液进行处理,达到排放标准,以免出现“二次污染”。所以,必须重视渗沥液处理技术的研究和应用。

1.垃圾渗沥液处理的特性

1.1水质较为复杂,危害性较大。渗滤液里面含有较高的浓度,而且污染物较多,还含有大量金属离子和氨氮,一些著名的专家学者采用专业联用技术鉴定出垃圾渗沥液中有将近一百种有机化合物,其中二十二种被列入我国和美国EPA环境优先控制污染物的黑名单中。与此同时,渗沥液中还含有10多种金属和植物营养素(氨氮等),水质成分十分复杂。

1.2化学需氧量的浓度较高。垃圾渗沥液中的化学需氧量和城市污水相比,浓度极高,最高浓度可以达到90000mg/L,BOD5最高达到38000mg/L。显然这就要求其处理构筑物的有机负荷率高,水力停留时间长,构筑物容积大。

1.3金属离子浓度较高。垃圾渗沥液中含有较多的金属成分,如铁,铅,锌,钾、钠,钙等,且含量都较高。在生物处理系统中,如果金属离子含量过高,对微生物会有强烈抑制作用,长时间运行,会导致污泥中的无机物含量增加,影响系统正常运行,故须先调pH值使重金属离子沉淀。

1.4氨氮浓度及含盐量较高。氨氮浓度随着垃圾污染物填埋时间的增加,氨氮的浓度也会随着相应的增加,而且最高的浓度可以达到1700mg/L。而渗沥液中的氮多以氨氮形式存在,约占TKN40%~50%。如此高浓度的氨氮,使微生物营养元素比例严重失调,仅靠硝化细菌和反硝化细菌脱氮不仅不能去除,反而会影响处理系统的正常运行,因渗沥液进入生化处理前常需用物化法脱氮。渗沥液中的盐主要为氯化物(100~4000mg/L)和磷酸盐(9~1600mg/L),若在缺水地区需对渗沥液回收利用时,应对其脱盐处理。

1.5颜色较深,气味难闻,所以需考虑脱色处理,难闻的气味会给运行操作带来较大的困难。

1.6微生物营养失衡。垃圾渗沥液虽然有较多的有机物和氨氮成分,但是磷元素少之又少。氨氮较高的含量指标加上较高的碱度,对厌氧消化不利。磷元素的缺乏也影响系统的稳定。因此,处理工艺中需在生化前进行脱氮处理,并往往需向系统投加磷等营养元素。

1.7水质波动较大。渗沥液的水质极易受填埋时间的影响,而且受季节降雨影响较大,所以整体的变化规律很难确定。渗沥液化学需氧量的浓度一般是在0.4~0.75,采用生物处理可达到良好的去除效果。但随着填埋时间的增加,垃圾层日趋稳定,垃圾渗沥液中的有机物浓度降低,可生化性差的相对分子质量大的有机化合物占优势,其BOD/COD值甚至可低于0.1。渗沥液水质如此不稳定,这就要求其处理系统要有一定的调节容积,抗冲击负荷能力要强。

2.垃圾渗沥液处理的技术方法

2.1回喷法

此方法已经被许多西方国家所应用。由于这些国家中垃圾厨余物较少,热量值较高,渗沥液产量少,一般采用将渗沥液回喷焚烧炉进行高温氧化处理。比如比利时某1000t/d的垃圾焚烧厂,其最大渗沥液产量为4t/d,平时基本没有,该厂建有300m3左右的渗沥液收集池,平时将渗沥液集中在池内,当垃圾热值较高时,用高压泵将渗沥液加压经自动过滤器、回喷系统喷入焚烧炉进行处理,当垃圾热值较低时停止。回喷法适合于渗沥液产量、垃圾热值高的场合,对于热值较低的垃圾则不适合,否则会造成焚烧炉炉膛温度过低、甚至熄火的状况。经计算,对于热值为5112kJ、含水率为48%的城市生活垃圾,理论上渗沥液最大回喷量为垃圾焚烧量的3119%。但中国垃圾的含水率太高,渗沥液产量大,因此回喷法不适用于中国。

2.2膜--生物反应器法

随着科学技术的发展,越来越多的新技术成果已经被应用在垃圾渗沥液处理过程中,并且获得了良好的认可和发展。膜技术的应用最成功和目前应用趋势最好的一类发展技术,包括超滤、纳滤和反渗透等。其中微滤(MF)孔径范围一般为011~75Lm,超滤(UF)筛分孔径为1nm~70Lm,均不能截留渗沥液中所含盐份,只能用来将微生物菌体、沉淀物从污水中分离出来,压力量在0102~017MPa之间。近来微滤和超滤在与好氧生物工艺处理组合应用,即所谓膜生化反应器(MBR)技术。MBR是生化反应器和膜分离相结合的高效废水处理系统,用膜分离(通常为超滤)替代了常规生化工艺的二沉池。与传统活性污泥法相比,MBR对有机物的去除率要高得多,在膜生物反应器中,由于分离效率提高,生化反应器内微生物质量浓度可从常规法的3~5g/L提高到15~25g/L,可以在比传统活性污泥法更短的水力停留时间内达到更好的去除效果,减小了生化反应器体积,提高了生化反应效率,出水无菌体和悬浮物,因此在提高系统处理能力和提高出水水质方面表现出很大的优势。

2.3厌氧工艺

在进行厌氧反应器设计时应对原水的生物化学甲烷势进行测定以指导设计,在进行厌氧反应器启动和对方案选择时应充分考虑生活垃圾焚烧厂渗滤液对未驯化污泥的厌氧毒性。BMP用于测定有多少有机物可以在厌氧过程中被降解生成甲烷,与BOD5结合考虑,还可以用来表达污染物中不可好氧降解但能厌氧降解的有机物组分,也能从一定程度上表达厌氧反应器的最大去除率,对于厌氧反应器,BMP比BOD5更有意义。BMP计算公式:BMP=1000@净总产气量/(395@渗滤液投加量),单位:g/L。[4]本项目中,渗滤液COD的平均值在50000mg/L左右,通过对渗滤液的BMP测定,其BMP可达到4.8g/L,由此可见,该渗滤液具有良好的厌氧可生化性。根据实验结果,对UASB设计水力停留时间为2.5d,COD去除率为60%,实践证明厌氧处理效果较好。

3.结束语

总之,只有不断地对城市的垃圾填埋处理方案进行改良和优化,才能环保有效地处理好城市的垃圾污染问题,减轻城市的环境负担。特别是要结合实际情况及时对处理工艺进行改良和优化,结合先进的科学技术,做到环保填埋,提高居民的生活水平。

参考文献

[1]刘敏,邵军,刘旭.北京市垃圾粪便处理设施节能减排问题探析[J].环境卫生工程,2015,23(04):51-54.

[2]詹爱平,冯斌,万睿,张栩聪,何春蕾.垃圾焚烧厂渗沥液处理系统的节能设计[J].给水排水,2013,49(S1):237-239.

[3]兰建伟,颜学宏,曾贤桂1垃圾焚烧厂中渗沥液的处理[J]1工程设计与建设,2004,36(5):39-421