数学的创造性思维

(整期优先)网络出版时间:2011-12-22
/ 2

数学的创造性思维

王金辉

内蒙古呼伦贝尔阿荣旗第一中王金辉

在数学教育中,学生的创新意识主要是指对自然界和社会中的数学现象具有好奇心,探究心,不断追求新知,独立思考,会从数学的角度发现和提出问题,进行探究和研究。教师应从数学创新意识的培养上入手,在平时的教学过程中真正把提高学生的数学创新意识落到实处,激发学生潜能。实际教学中,无论是基础知识的传授解题方法的训练,还是个性心理的塑造,都要重视培养学生的创新能力。

本文从数学学科的特点出发,就创新性思维能力的培养谈谈自己的看法。

一、培养学生创造性思维是学科教学努力的方向

要培养学生的创造性思维、创造精神,首先必须转变我们教师的教育观念。在具体学科教学中,我们应当从以传授、继承已有知识为中心,转变为着重培养学生创造性思维、创新精神。现代教学理论认为向学生传授一定的基本理论和基础知识,是学科教学的重要职能,但不是唯一职能。在加强基础知识教学的同时,培养学生的创新意识和创造智能,从来就有不可替代的意义。只有培养学生的创新精神和创造能力,才能使他们拥有一套运用知识的“参照架构”,有效地驾驭灵活地运用所学知识。形象地说,我们的学科教学的目的不仅是要向学生提供“黄金”,而且要授予学生“点金术”。

事实上,现成的结论并不是最重要的,重要的是得出结论的过程;现成的真理并不是最重要的,重要的是发现真理的方法;现成的认识成果并不是最重要的,重要的是人类认识的自然发展过程。这无疑是一种与传统教学观有着本质区别的全新的创造教学观。因此,在学科教学中,我们必须确立这样的观念:只有用创造来教会创造,用创造力来激发创造力,只有用发展变化来使学生适应并实现发展变化,只有用人类不断发展变化的现实来使学生懂得人类已有的一切都只是暂时的、相对的和有待于进一步发展的东西,懂得创造和超越已有的东西不仅是可能性的,而且是必要的。用这样的观念来设计整个学科教学,我们才能真正实现创造性教学的预期目标。

二、数学教学过程中学生创造性思维的培养

数学,“思维的体操”,理应成为学生创造性思维能力培养的最前沿学科。为了培养学生的创造性思维,在数学教学中我们尤其应当注重应充分尊重学生的独立思考精神,尽量鼓励他们探索问题,自己得出结论,支持他们大胆怀疑,勇于创新,不“人云亦云”,不盲从“老师说的”和“书上写的”。那么,数学教学中我们应如何培养学生的创造性思维呢?

1.注重发展学生的观察力,是培养学生创造性思维的基础。

正如著名心理学家鲁宾斯指出的那样,“任何思维,不认它是多么抽象的和多么理论的,都是从观察分析经验材料开始。”观察是智力的门户,是思维的前哨,是启动思维的按钮。观察的深刻与否,决定着创造性思维的形成。因此,引导学生明白对一个问题不要急于按想的套路求解,而要深刻观察,去伪存真,这不但为最终解决问题奠定基础,而且,也可能有创见性的寻找到解决问题的契机。

例求lgtg10•lgtg20•…lgtg890的值

凭直觉我们可能从问题的结构中去寻求规律性,但这显然是知识经验所产生的负迁移。这种思维定势的干扰表现为思维的呆板性,而深刻地观察、细致的分析,克服了这种思维弊端,形成自己有创见的思维模式。在这里,我们可以引导学生深入观察,发现题中所显示的规律只是一种迷人的假象,并不能帮助解题,突破这种定势的干扰,最终发现出题中隐含的条件lgtg450=0这个关键点,从而能迅速地得出问题的答案。

2.提高学生的猜想能力,是培养学生创造性思维的关键。

猜想是由已知原理、事实,对未知现象及其规律所作出的一种假设性的命题。在我们的数学教学中,培养学生进行猜想,是激发学生学习兴趣,发展学生直觉思维,掌握探求知识方法的必要手段。我们要善于启发、积极指导、热情鼓励学生进行猜想,以真正达到启迪思维、传授知识的目的。

启发学生进行猜想,作为教师,首先要点燃学生主动探索之火,我们决不能急于把自己全部的秘密都吐露出来,而要“引在前”,“引”学生观察分析;“引”学生大胆设问;“引”学生各抒己见;“引”学生充分活动。让学生去猜,去想,猜想问题的结论,猜想解题的方向,猜想由特殊到一般的可能,猜想知识间的有机联系,让学生把各种各样的想法都讲出来,让学生成为学习的主人,推动其思维的主动性。为了启发学生进行猜想,我们还可以创设使学生积极思维,引发猜想的意境,可以提出“怎么发现这一定理的?”“解这题的方法是如何想到的?”诸如此类的问题,组织学生进行猜想、探索,还可以编制一些变换结论,缺少条件的“藏头露尾”的题目,引发学生猜想的愿望,猜想的积极性。

3.就学生的质疑思维能力,是培养学生创造性思维的重点。

质疑思维就是积极地保持和强化自己的好奇心和想象力,不迷信权威,不轻信直观,不放过任何一个疑点,敢于提出异议与不同看法,尽可能多地向自己提出与研究对象有关的各种问题。提倡多思独思,反对人云亦云,书云亦云。

例如,在讲授反比例函数时,我是这样安排讲授:

①对于我们过去所讲过的一次函数,它的图像是怎样的?

②一次函数的图像是一条直线,反比例函数的图像为什么会分为两支?

③为什么当k>0时,图象分布在一三象限,当k<0时,图象分布在二四象限?

通过这一系列的问题质疑,使学生对反比例函数得到了创造性地理解与掌握。在数学教学中为炼就与提高学生的质疑能力,我们要特别重视题解教学,一方面可以通过错题错解,让学生从中辨别命题的错误与推断的错误;另一方面,可以给出组合的选择题,让学生进行是非判断;再一方面,可以巧妙提出某命题,指出若正确请证明,若不正确请举反例,提高辨明似是而非的是以及否定似非而是的非的能力。

4.注意基础知识的积累,是培养学生创造性思维的保证。

扎实的基础知识是培养创新意识的基石。基础知识与创造力是相辅相成的:一方面,培养创新性思维能力要有好的基础知识为前提,没有扎实的基础知识,创新性思维能力的培养就无从实现;另一方面,创新性思维是对基础知识的升华,学生利用自己的创新性思维能力对所学知识进行加工,促进了对基础知识的理解和掌握,也促进从多层次,多角度对基础知识的认识和思考,从而实现更高层次的创新。

数学能力主要表现在掌握数学知识,技能数学思想方法上的个性心理特征,其中数学技能在解题中体现为三个阶段:探索阶段——观察、试验、想象;实施阶段——推理、运算、表述;总结阶段——抽象、概括、推广。这几个过程包括了创新技能的全部过程,因此在数学解题教学中,首先要引导学生多方位观察,多角度思考,广泛联想,培养学生敏锐的观察力和活跃的灵感。其次在教给学生学习方法和解题方法同时,要进行有意识的强化训练,自学例题,图解分析,推理方法,理解数学符号,温故知新,归类鉴别等等,学生在应用这些方法求知的过程中,掌握相应的数学能力,形成创新技能。