(陕西能源赵石畔煤电有限公司陕西榆林719000)
摘要:电力变压器故障诊断技术能够检测出变压器运行中发生的故障,并对故障类型做出准确判断。绝缘油试验就是一种很重要的故障诊断方法,该方法能够有效排查变压器的潜在故障,保障变压器的正常运行。我国对变压器设备的维护主要实行定期检修制度,依靠人工巡检的方法周期性的检验和维护电力设备,即对设备进行预防性试验。
关键词:电力;变压器故障;诊断技术
运行中的变压器难免发生故障,检修工作对变压器故障消除尤为重要。通过直观检查发现故障后,需利用有效手段诊断分析。变压器内部故障检修前,先要辨明保护动作特点,取油、气做试验分析,确定故障性质,明确试验项目,确定故障点以便做出详细检修方案。
1电力变压器高压试验故障分析
1.1试验温度变化
在变压器高压试验过程中,试验温度的变化会在一定程度上影响试验结果的可靠度,这是电气设备高压试验普遍存在的一个问题。由于变压器中存在对温度变化敏感的绝缘电阻,通常随着温度的升高,绝缘电阻的分子和离子运动会变得越来越剧烈,致使其极化和电导情况加剧,而绝缘电阻阻值则会有所降低,即温度升高时绝缘电阻阻值会降低。同时,绝缘电阻中除了离子与分子外,还有很多杂质存在,在温度升高的情况下杂质也会剧烈运动,致使阻值进一步降低。一般,绝缘电阻表面杂质越多,在温度上升时阻值会降低得越明显。因此,不恒定的试验温度在变压器高压试验故障中十分常见,值得重视。
1.2漏电现象严重
漏电现象即泄露电流,也是变压器高压试验的常见故障。虽然理论上漏电现象与升压速度无关,但实际操作中发现,变压器在电压变化期间不仅会发生漏电现象,还存在一定的吸收现象,尤其是变压器容量较大时吸收现象更严重,与之对应的吸收电流也会随之增大。此时,如果利用微安表测量电流可以发现,测量结果是吸收电流与泄露电流的合电流,而非单一的泄露电流,且随着变压器容量的增大,所测数值偏差会更大。考虑到泄露电流的大小与电压升压速度有一定关联,所以若想改善漏电状况,必须注意升压方法和速度,以免为判断变压器性能和工作状态提供一个错误的参考。
1.3变压器铁芯的影响
高压试验中,变压器铁芯有时需要接触地面。若此时变压器没有采取接地措施,势必会导致绝缘电阻升高,影响变压器的吸收比,且变压器在无接地处理情况下进行高压试验,还会增高输入电压,大大增加试验环境的危险性。因此,必须妥善处理变压器铁芯接地问题。变压器绝缘电阻测试过程中,如果遇到的铁芯线路没有接地或者是绝缘铁芯,线路中的铁芯和绕组等值线路会发生变化,变成铁芯与外壳相连,此时绝缘电阻也会出现升高情况。此外,过高的试验电压可能会产生放电声,并直接击破绝缘层降低整个试验结果的真实性和准确性。
2电力变压器故障诊断技术
2.1变压器故障在线诊断法
(1)气相色谱在线检测技术
气相色谱仪被广泛应用在各种变压器的故障检测中,该方法具有便捷、高效、灵敏等优良特点,可以快速检测变压器油中所含各种气体的浓度。气相色谱在线检测技术的核心步骤是油气分离。目前在实际工程中应用最广泛的是通过高分子膜来进行油气分离。高分子膜对于不同的气体分子具有选择透过性,可以直接过滤出样品油中需要测定的目标气体,该方法的操作流程相比于振动脱气、鼓泡法等传统方法更加简单。
(2)红外光谱在线检测技术
红外光谱技术可以直测定油溶气体的类别和浓度,具有快速准确、非接触性及容易操作等特点。实际工程中一般使用HW-500红外气体分析仪,该检测器对热效应的敏感度很高,可以直接对油溶气体做定量分析。虽然红外光谱仪可以迅速准确的检测多种气体,但是它无法感应变压器发生故障时产生的H2且成本昂贵,所以人们近年来更加注重光声光谱技术在诊断变压器故障方面的研究。
2.2变压器故障离线诊断法
(1)直观检查法
技术人员直接进入配电室检查室内基本电器元件和线路是否存在烧损、冒烟、绝缘损坏、异常放电痕迹和设备爆炸损坏等现象。该方法简单直观,但对故障状况分析的程度不够深入,往往只能在变压器发生故障之后对最为明显的故障原因进行大概的初步判断,是最基本和简单的检查方法。
(2)电气预防性试验法
电气预防性试验法是一种评估电力变压器性能指标是否正常的方法,该试验的方法和种类较多,但实施流程往往较为繁琐。有些试验必须要将变压器拆解之后才可进行,有些需要与其他试验项目同时进行,有些则是变压器投入运行之后定期检查的测试项目,有些需要在特殊环境下才可进行;如交流耐压试验就是一种破坏性试验,这种试验对变压器和电力线路的耐压要求都很高,现场条件一般很难满足,并且对变压器设备进行频繁的拆装并不利于设备的维护。
2.3绕组变形检测
当变压器遭受短路电流冲击时,会因强大电动力作用导致绕组变形,严重时将直接造成突发性损坏事故。绕组发生局部变形也不可忽视,即使没有立即损坏,也有可能留下严重的故障隐患,如:绝缘间距发生变化,固体绝缘被损伤导致局部放电,当过电压作用时可能发生匝间、层间击穿,导致突发性绝缘事故,甚至在正常运行电压下,因局部放电的长期作用发生绝缘击穿;还会使绕组机械性能下降,抗短路能力降低等。故如何判断变压器绕组完好尤为重要。变压器在遭受短路电流冲击后,常用油中溶解气体分析、绕组直流电阻、短路阻抗,绕组的频率响应分析、空载电流和损耗等法来诊断绕组有无变形,确定绕组发生严重变形后,应对变压器进行吊芯或吊罩检查后处理。
2.4直流电阻测试
测量绕组直流电阻是考查变压器纵绝缘的主要手段之一,有时甚至是判断电流回路连接状况的唯一方法。它能判断出分接开关各分接位置接触是否良好、指示是否正确;引出线有无断裂;绕组引出线与导电杆接触情况;多股导线并绕的绕组是否有断股情况;变压器绕组接头焊接不良,变压器绕组匝间、层间短路等。测量变压器直流电阻时电流选择要恰当,测量中不得切换无励磁分接开关,避免电弧导致油质裂化甚至损坏变压器。1600kV•A及以下容量的三相变压器,各相测得值的相互差值应小于平均值的4%,线间测得值的相互差值应小于平均值的2%;1600kV•A以上三相变压器,各相测得值的相互差值应小于平均值的2%,线间测得值的相互差值应小于平均值的1%;变压器的直流电阻与同温下出厂值比较,相应变化不应大于2%;如电阻相间差在出厂时超过规定,厂家已说明了这种偏差的原因,则与以前相同部位测得值比较,其变化不应大于2%。
2.5介质损耗因数试验
当怀疑变压器整体受潮,油劣化,绕组上附着油泥及严重的局部缺陷时可用测试变压器介质损耗因数的方法进行检测。对电容较小的设备测介质损耗因数tgδ能有效地发现局部集中性和整体分布性缺陷,但对电容量较大的设备,只能发现绝缘的整体分布性缺陷。tgδ测量结果受表面泄漏、试验接线、温度及外界条件影响,应采取措施减小和消除。测量结果应换算到同一温度时的数值进行比较,20℃时500kV不大于0.6%,110~220kV不大于0.8%,35kV不大于1.5%。
结束语
变压器作为电力传输和转换的重要设备,必须要降低故障发生率,提高运行稳定性,并要做到早期检测和故障诊断,对确保整个电力网络系统的正常运行有重要的意义。
参考文献
[1]王伟.油浸式电力变压器故障诊断技术的研究[D].济南:山东大学,2008
[2]杨廷方.变压器在线监测与故障诊断新技术的研究[D].武汉:华中科技大学,2008
[3]甘伟.基于红外图像的变压器图像处理方法研究[D].广州:华南理工大学,2017.