三、上交所国债收益波动率模型的构建
首先对样本收益率序列建立辅助回归模型:
由于一般金融文献均认为GARCH(1,1)模型就能够描述大量的金融时间序列数据,因此,本文根据FIGARCH(1,d,1)模型对样本序列的条件异方差建模,模型的最终形式为:
四、实证研究
(一)参数估计
对模型参数估计方法采用拟极大似然估计(QMLE)。由于分数差分算子d是捕捉过程中长期记忆特征的,因此,在参数估计时,滞后阶数选用200阶。另外,由于样本序列具有非正态性特征,因此本文在参数估计过程中假定残差序列服从t分布。计算结果如表4所示:
模型的AIC值为-12.314,SC值为-12.243,都非常小,这说明FIGARCH模型能够较好地拟合数据。另外,采用Box-Pierce统计量,进一步检验建立模型后标准化参差序列及序列是否存在自相关性,其中K值为滞后阶数,取k=20,得出Q(K)=6.32(0.914),Q
2(20)=16.72(0.923)。结果显示在高概率水平下接受Ho假设,即序列不存在自相关。
(二)预测
我们对条件方差进行单步向前预测,在此采用平均预测误差平方和的平方根(RMSE),平均绝对误差(MAE)和平均预测误差(MFE)三个衡量时间序列预测效果最常用的指标进行测量。为进一步检验所得FIGARCH模型对样本序列刻画的效果,我们同时对样本序列建立GARCH模型(具体形式略),并与FIGARCH模型进行比较,预测的对象为样本外2006年4月19日至29日的10天数据,结果见表5。
结果显示FIGARCH模型在三项指标的预测值偏离度上都小于GARCH模型。这说明FIGARCH模型对条件方差波动的预测能力上明显优于GARCH模型。
五、结论
本文通过对上海证券交易所国债指数收益率序列波动特征的研究发现,上交所国债指数收益率不但具有一般金融类时间序列非正态性和条件异方差的特点,还具有长记忆性特征,据此,本文选取了更适合刻画时间序列长记忆特征的FIGARCH(p,d,q)模型对上交所国债指数收益率序列建模。
通过与GARCH模型的比较发现,FIGARCH模型对上交所国债指数收益率序列条件方差波动的预测能力上明显较强。这些结论相信能为今后进一步深化对我国国债市场风险特征的研究提供一定的参考。