A rapid classification method of aluminum alloy based on laser-induced breakdown spectroscopy and random forest algorithm

(整期优先)网络出版时间:2019-03-13
/ 1
Asanimportantnon-ferrousmetalstructuralmaterialmostusedinindustryandproduction,aluminum(Al)alloyshowsitsgreatvalueinthenationaleconomyandindustrialmanufacturing.HowtoclassifyAlalloyrapidlyandaccuratelyisasignificant,popularandmeaningfultask.Classificationmethodsbasedonlaser-inducedbreakdownspectroscopy(LIBS)havebeenreportedinrecentyears.AlthoughLIBSisanadvanceddetectiontechnology,itisnecessarytocombineitwithsomealgorithmtoreachthegoalofrapidandaccurateclassification.Asanimportantmachinelearningmethod,therandomforest(RF)algorithmplaysagreatroleinpatternrecognitionandmaterialclassification.ThispaperintroducesarapidclassificationmethodofAlalloybasedonLIBSandtheRFalgorithm.TheresultsshowthatthebestaccuracythatcanbereachedusingthismethodtoclassifyAlalloysamplesis98.59%,theaverageofwhichis98.45%.ItalsorevealsthroughtherelationshiplawsthattheaccuracyvarieswiththenumberoftreesintheRFandthesizeofthetrainingsamplesetintheRF.Accordingtothelaws,researcherscanfindouttheoptimizedparametersintheRFalgorithminordertoachieve,asexpected,agoodresult.TheseresultsprovethatLIBSwiththeRFalgorithmcanexactlyclassifyAlalloyeffectively,preciselyandrapidlywithhighaccuracy,whichobviouslyhassignificantpracticalvalue.