Utilizingdatafromcontrolledseismicsourcestoimagethesubsurfacestructuresandinvertthephysicalpropertiesofthesubsurfacemediaisamajoreffortinexplorationgeophysics.Denseseismicrecordswithhighsignal-to-noiseratio(SNR)andhighfidelityhelpsinproducinghighqualityimagingresults.Therefore,seismicdatadenoisingandmissingtracesreconstructionaresignificantforseismicdataprocessing.Traditionaldenoisingandinterpolationmethodsrarelyoccasionedrelyonnoiselevelestimations,thusrequiringheavymanualworktodealwithrecordsandtheselectionofoptimalparameters.Weproposeasimultaneousdenoisingandinterpolationmethodbasedondeeplearning.Fornoisyrecordswithmissingtraces,weadoptaniterativealternatingoptimizationstrategyandseparatetheobjectivefunctionofthedatarestoringproblemintotwosub-problems.Theseismicrecordscanbereconstructedbysolvingaleast-squareproblemandapplyingasetofpre-traineddenoisingmodelsalternativelyanditeratively.Wedemonstratethismethodwithsyntheticandfielddata.