Simultaneous Denoising and Interpolation of Seismic Data via the Deep Learning Method

(整期优先)网络出版时间:2019-01-11
/ 1
Utilizingdatafromcontrolledseismicsourcestoimagethesubsurfacestructuresandinvertthephysicalpropertiesofthesubsurfacemediaisamajoreffortinexplorationgeophysics.Denseseismicrecordswithhighsignal-to-noiseratio(SNR)andhighfidelityhelpsinproducinghighqualityimagingresults.Therefore,seismicdatadenoisingandmissingtracesreconstructionaresignificantforseismicdataprocessing.Traditionaldenoisingandinterpolationmethodsrarelyoccasionedrelyonnoiselevelestimations,thusrequiringheavymanualworktodealwithrecordsandtheselectionofoptimalparameters.Weproposeasimultaneousdenoisingandinterpolationmethodbasedondeeplearning.Fornoisyrecordswithmissingtraces,weadoptaniterativealternatingoptimizationstrategyandseparatetheobjectivefunctionofthedatarestoringproblemintotwosub-problems.Theseismicrecordscanbereconstructedbysolvingaleast-squareproblemandapplyingasetofpre-traineddenoisingmodelsalternativelyanditeratively.Wedemonstratethismethodwithsyntheticandfielddata.