深度学习算法在物联网终端设备上的应用存在着系统开销控制与保证精度和实时性之间平衡的问题。本文提出了一种在云和终端设备上分布式混合部署深度学习神经网络的方法:压缩深度神经网络在本地终端上执行快速的推理运算;当系统基于可信表现的判断标准需要进一步处理时,中间数据可传输至云服务器端,进一步利用云端的深层深度神经网络进行处理,以提高系统的表现精度。本文给出了深度神经网络在终端设备上部署时和在终端与云端上混合部署时进行推理运算的量化比较效果,结果显示此种方法兼顾了深度神经网络的系统开销和准确率。
智能物联技术
2019年1期