借鉴求线性矩阵方程组同类约束解的MCG算法(修正共轭梯度法),建立了求多个未知矩阵的线性矩阵方程组的一种异类约束解的MCG1-3-5算法,证明了该算法的收敛性。该算法不仅可以判断矩阵方程组的异类约束解是否存在,而且在有异类约束解,且不考虑舍入误差时,可在有限步计算后求得矩阵方程组的一组异类约束解;选取特殊初始矩阵时,求得矩阵方程组的极小范数异类约束解。同时还能求取指定矩阵在该矩阵方程组异类约束解集合中的最佳逼近。算例表明,该算法有效。
福建工程学院学报
2018年4期