Conjugate Gradient Algorithm in the Four-Dimensional Variational Data Assimilation System in GRAPES

(整期优先)网络出版时间:2018-06-16
/ 1
Minimizationalgorithmsaresingularcomponentsinfour-dimensionalvariationaldataassimilation(4DVar).Inthispaper,theconvergenceandapplicationoftheconjugategradientalgorithm(CGA),whichisbasedontheLanczositerativealgorithmandtheHessianmatrixderivedfromtangentlinearandadjointmodelsusinganon-hydrostaticframework,areinvestigatedinthe4DVarminimization.First,theinfluenceoftheGram-SchmidtorthogonalizationoftheLanczosvectorontheconvergenceoftheLanczosalgorithmisstudied.TheresultsshowthattheLanczosalgorithmwithoutorthogonalizationfailstoconvergeaftertheninthiterationinthe4DVarminimization,whiletheorthogonalizedLanczosalgorithmconvergesstably.Second,theconvergenceandcomputationalefficiencyoftheCGAandquasi-Newtonmethodinbatchcyclingassimilationexperimentsarecomparedonthe4DVarplatformoftheGlobal/RegionalAssimilationandPredictionSystem(GRAPES).TheCGAis40%morecomputationallyefficientthanthequasi-Newtonmethod,althoughtheequivalentanalysisresultscanbeobtainedbyusingeithertheCGAorthequasi-Newtonmethod.Thus,theCGAbasedonLanczositerationsisbetterforsolvingtheoptimizationproblemsintheGRAPES4DVarsystem.