数形结合思想就是通过数与形之间的相互转化来解决数学问题,包括以形助数和以数赋形两个方面。利用它可以使复杂问题简单化,抽象问题具体化。华罗庚教授曾说过:“数缺形时少直观,形缺数时难入微。”因此数形结合思想是一种重要的数学思想。而通常我们在教学中用代数知识解决几何问题较多,用几何知识解决代数问题涉及较少,本文就重点举几个用几何图形解决代数问题以渗透数形结合思想的实例,以飨读者。
中小学数学:初中版
2013年11期