Conjugate Gradient Algorithm in the Four-Dimensional Variational Data Assimilation System in GRAPES

在线阅读 下载PDF 导出详情
摘要 Minimizationalgorithmsaresingularcomponentsinfour-dimensionalvariationaldataassimilation(4DVar).Inthispaper,theconvergenceandapplicationoftheconjugategradientalgorithm(CGA),whichisbasedontheLanczositerativealgorithmandtheHessianmatrixderivedfromtangentlinearandadjointmodelsusinganon-hydrostaticframework,areinvestigatedinthe4DVarminimization.First,theinfluenceoftheGram-SchmidtorthogonalizationoftheLanczosvectorontheconvergenceoftheLanczosalgorithmisstudied.TheresultsshowthattheLanczosalgorithmwithoutorthogonalizationfailstoconvergeaftertheninthiterationinthe4DVarminimization,whiletheorthogonalizedLanczosalgorithmconvergesstably.Second,theconvergenceandcomputationalefficiencyoftheCGAandquasi-Newtonmethodinbatchcyclingassimilationexperimentsarecomparedonthe4DVarplatformoftheGlobal/RegionalAssimilationandPredictionSystem(GRAPES).TheCGAis40%morecomputationallyefficientthanthequasi-Newtonmethod,althoughtheequivalentanalysisresultscanbeobtainedbyusingeithertheCGAorthequasi-Newtonmethod.Thus,theCGAbasedonLanczositerationsisbetterforsolvingtheoptimizationproblemsintheGRAPES4DVarsystem.
机构地区 不详
出处 《气象学报:英文版》 2018年6期
出版日期 2018年06月16日(中国期刊网平台首次上网日期,不代表论文的发表时间)
  • 相关文献