简介:[目的/意义]冷链配送碳排放动态预测是企业碳排放精准评估及其绿色信用等级评定的重要依据.本研究面向车辆碳排放受路况信息、行驶特征、制冷参数等多因素影响,提出一种融合多源信息的冷藏车辆碳排放动态预测模型.[方法]基于道路车辆数量与像素面积占比表征路况信息,构建基于改进YOLOv8s的路况信息识别模型,并以路况信息、行驶特征(速度、加速度)、货物重量、制冷参数(温度、功率)等为输入,构建基于改进iTransformer的冷藏车辆碳排放动态预测模型.最后与其他模型展开对比分析,分别验证路况信息识别与车辆碳排放动态预测的精度.[结果]改进的YOLOv8s路况信息识别模型在精确率、召回率和平均识别精度上分别达到98.1%、95.5%和 98.4%,比YOLOv8s分别提高了 1.2%、3.7%和 0.2%,参数量和运算量分别减少了 12.5%和31.4%,检测速度提高了5.4%.改进的iTransformer...
简介:本文采用逐次回归方法筛选有关因子组建多元回归预测式,复相关系数分别为0.9898和0.9912,预测水稻吸汁害虫大发生盛期的数量,准确率可达86%。稻叶蝉七月份数量(N7)与各项相关因子的回归预测式:log=-6.385112+0.29046692logN6+1.102265logT2+4.0605263logHR2+2.6268521logTs2+3.7651113logTs5+0.83517715logTs6………………………(1)稻飞虱九月份数量(N9)与相关因子的回归预测式:log=2.8586319+0.62605404logN3+11.625595logHR5+2.4688661logHWp10-5.0346517logTs2+0.25011289logR1+0.31216437logHAp9…………………(2)
简介:本研究以内蒙古锡林郭勒盟苏尼特右旗短花针茅荒漠草原为研究对象,采用分层取样技术,分别对碱韭和短花针茅为主的草地植物群落进行调查(测定指标为高度、盖度、密度和地上现存量),获得禾本科为主、碱韭为主以及由二者构成的复合样本数据。通过MATLAB软件平台,把植物群落的数量特征(高度、盖度和密度)作为输入因子,以群落现存量作为输出因子来建立BP神经网络模型,并对预测结果进行检验。结果显示,禾本科为主、碱韭为主以及由二者构成的复合样本,采用BP神经网络平均预测准确率分别为94.1%,92.98%,91.01%。因此,BP神经网络可作为草地植物群落地上现存量模拟与预测的有效工具之一。采用BP神经网络对不同草地植物类群进行模拟和预测可能会存在差异,但这种差异会随着样本容量的增大或训练精度的增加而弱化。