简介:预测类Apollo返回舱外形在高焓来流下的气动热特性,研究网格Reynolds数、壁面温度、多种化学反应模型以及限制器对预测热流的影响.采用ESI-CFD-FASTRAN软件作为数值模拟平台,使用基于温度梯度及分子扩散效应的热流模型;空间离散采用Roe-FDS格式,时间推进采用点隐式;采用等温壁面条件.数值计算表明:(1)热流在返回舱头部驻点处达到一个极值,沿着壁面热流不断下降,经过返回舱肩部热流有突越上升;(2)满足网格Reynolds数小于10的网格获得的热流较为准确;(3)使用Gupta模型计算得到的热流与Park85模型得到的类似,但是获得的热流分布类似;(4)采用湍流模型获得的头部肩部热流结果与层流结果相同;(5)二阶min-mod限制器实现了高阶格式,其计算得到的热流结果在肩部略高,但是整体分布略低于不带限制器的格式.因此,在计算中采用满足网格Reynolds数壁面网格,采用带限制器的高阶格式计算获得的热流分布更加准确;由于头部热流主要贡献并非来源于湍流,因此对于肩部热流采用层流模型足够准确.
简介:讨论了一类具有奇异系数的p-Laplace问题-Δpu-μ|u|u|x|p=u|x|tu+λuq-2u,x∈Ω,u=0,x∈Ω无穷多解的存在性,其中N≥3,Ω是RN中一有界光滑区域,0∈Ω,Δpu=-div(|▽u|p-2▽u),0≤μ〈μ=(N-p)ppp,1〈p〈N,0≤t〈p,λ〉0,1〈q〈p,p*(t)=p(N-t)(N-p)是Hardy-Sobolev临界指数利用变分原理和对偶喷泉定理,证明了该问题具有无穷多解.
简介:本文考虑一类被捕食种群为线性密度制约,捕食者种群无密度制约且具HollingⅠ型功能性反应的捕食与被捕食两种群模型 得到了系统存在极限环的必要条件,且证明了当b充分小时,系统至少存在两个极限环。
简介:讨论了一类混合单调算子的耦合不动点定理,并获得了最大最小耦合不动点.作为应用,讨论了Banach空间中含有不连续项的混合单调Volterra型积分方程耦合拟解的存在性问题.
简介:本文首先利用共轭梯度及矩阵性质,构造迭代算法,并证明算法的收敛性,同时对该算法当方程相容时收敛到问题的极小范数解进行证明.然后,对该算法进行细微修改,应用于相应的最佳逼近问题.最后给出相关的数值实例,验证算法的有效性.
简介:讨论了形如∫a^a+h(x-a)βf(x)dx的Gauss-Jacobi求积公式,当积分区间长度趋向于零时,确定了求积公式的余项中介点η的渐近性,并给出了校正公式,比原公式提高了两次代数精度.此外,本文的结论包含了文[3]的结果.