简介:为了更加精确地模拟流动/运动耦合问题,建立了耦合动态混合网格生成、非定常流场计算和六自由度运动方程求解的一体化计算方法,并在统一框架内同时实现了松耦合与紧耦合方法.通过圆柱涡致自激振荡(vortexinducedvibration,VIV)的模拟,对不同时间精度的松耦合和紧耦合算法的优劣及适用范围进行了评估和分析;通过引入附加质量的概念,对耦合算法的稳定性进行了理论分析.研究表明:在流体的密度与物体的密度接近时,松耦合方法是不稳定的,必须采用紧耦合方法.最后利用耦合算法对二维鱼体的自主游动和钝锥三自由度自由飞过程进行了数值模拟,证实了理论分析的结论.
简介:基于惯性系的双矢量定姿方法选择惯性系中的两个重力视运动向量作为不共线矢量,解决了传统双矢量定姿方法在晃动基座条件下易受载体角运动干扰而无法实现对准的问题,但该方法仍需要精确的地理纬度信息以参与对准计算。针对未知纬度条件下的SINS抗晃动自对准问题,提出了一种基于重力视运动的三矢量自对准方法。该方法将初始对准问题归结为求解当前时刻导航系相对于初始时刻载体系的姿态矩阵问题,并利用矢量运算进行求解,仿真结果表明:加速度计随机测量噪声会映射为重力视运动随机噪声,降低对准精度;当加速度计随机噪声量级较大时,会带来对准计算失败。针对噪声问题,引入Daubechies(db4)小波进行5层分解来实现对重力视运动的降噪,并选择去噪后的重力视运动向量参与三矢量定姿解算,仿真结果表明:db4小波具有良好的去噪效果,基于小波去噪的三矢量自对准方法可以有效完成未知纬度条件下的SINS初始对准。
简介:目的:基于支持向量机回归(SVR)模型在非线时间序列的预测能力及经验模态分解(EMD)方法在处理非线性非平稳性的优势,提出一种复合自回归经验模态分解支持向量机回归(AR-EMDSVR)模型,提高非线性非平稳船舶运动极短期预报精度。创新点:1.研究非线性非平稳船舶运动的极短期预报问题,提出一种复合的预报方法;2.基于不同层次的预报模型和模型试验数据,分析非线性非平稳性对极短期预报精度的影响。方法:1.在SVR模型中引入基于自回归(AR)预报端点延拓的EMD方法,形成复合的AR-EMDSVR预报模型;2.基于集装箱船模水池试验运动数据将AR-EMD-SVR模型与AR、SVR和EMD-AR三种模型进行比较,分析非线性非平稳性对极短期预报的影响以及不同模型的预报性能。结论:1.AR-EMD方法能够有效的克服非平稳对极短期预报模型(AR和SVR)在精度上所带来的不良影响;2.基于船模试验数据的预报结果表明:相较于AR、SVR和EMD-AR三种预报模型,基于AR-EMD-SVR模型的非线性非平稳船舶运动极短期预报结果具有更高的精度。