学科分类
/ 1
4 个结果
  • 简介:有限单元法被广泛的采用来描述柔性体的弹性变形,然而有限元节点坐标数目庞大,将会给动力学方程求解带来巨大的计算负担.如何降低柔性体的自由度,是当前柔性多体系统动力学研究的一个重要命题.本文以中心刚体-柔性梁系统为例,采用Krylov方法和模态方法进行降价.然后分别采用有限元全模型、Krylov阶模型和模态阶模型,对中心刚体-柔性梁进行刚-柔耦合动力学仿真.仿真结果表明,与采用模态阶方法相比,采用Krylov模型阶方法只需要较低的自由度,就可以得到与采用有限元方法完全一致的结果.说明Krylov模型阶方法能够有效的用于柔性多体系统的模型降价研究.

  • 标签: 柔性梁 刚柔耦合 模型降阶 动力学仿真
  • 简介:首先基于Euler-Bernoulli原理,建立了一柔性悬臂梁撞击系统的动力学方程,并给出了模态分析方法;然后在若干基本假定和定义的基础上,利用Karhunnen-Loève展开这一正交分解手段,给出了体现动力系统主要特征的阶模型,可将系统的本征值进行新的表述;最后将所提方法应用于柔性悬臂梁撞击系统的阶分析过程中,并给出了相应数值例题.结果表明:本方法可以用少量的模态准确模拟可控系统的动力学特性,可为系统控制研究提供基础.

  • 标签: 降阶方法 撞击 ve 柔性梁 柔性悬臂梁 动力学方程
  • 简介:首先弹性矩形薄板的动力学方程表示成为Hamilton正则方程,然后采用辛几何方法对全状态相变量进行分离变量,并利用得到的共扼辛正交归一关系,求出四固支弹性矩形薄板的固有频率和振型的解析解表达式.由于在求解过程中不需要事先人为的选取挠度函数,而是从弹性矩形薄板的动力学基本方程出发,直接利用数学的方法求出可以满足四固支边界条件下薄板的固有频率和振型的解析解表达式,使得问题的求解更加理论化和合理化.此外,还给出了计算实例来验证本文所采用的方法以及所推导出公式的正确性.

  • 标签: 弹性矩形薄板 四边固支 自由振动 HAMILTON正则方程 固支边界条件 固有频率
  • 简介:研究了一类参数激励和外激励联合作用下四简支薄板在1:1内共振下的周期解分叉.首先,根据vonKarman方程推导出四简支薄板的运动控制方程,利用Galerkin方法得到参数激励和外激励联合作用下的两个自由度的运动方程.然后,通过引入周期变换和相应的Poincar6映射推广了次谐Melnikov方法.最后,对系统进行数值模拟验证了理论的正确性.

  • 标签: 周期解 次谐Melnikov函数 周期变换 薄板