简介:应用Tsallis提出的非广延统计力学理论以及与之密切相关的非线性Fokker-Planck方程所描述的动力系统,根据我国上证指数和深证指数2004年1月1日~2008年11月13日的高频数据,分析了在三种不同的时间标度下股指收益的概率分布,发现Tsallis分布可以很好地描述两市收益分布的尖峰厚尾有限方差等特征,同时也给出了市场微观动力学层面的解释。揭示出我国上海和深圳股市的价格过程并不符合随机游走,而是反常扩散过程,两市具有十分接近的非线性动力系统特征。所得结论对于研究我国金融市场的资产配置和定价、风险管理和制度建设都具有重要的意义。
简介:云计算是目前国际上诸如信息科学与管理科学中的热点研究课题,其中云资源提供商是构建云平台的基本单元。目前,对云资源提供商进行合理的收益分配机制设计是提升云平台运营能力的一个关键因素。本文建立了一个由多个云资源提供商组成的合作博弈模型,分析了该合作博弈的超可加性和核心非空性,并给出了云资源提供商及其联盟的收益分配方案:核心和Shapley值。通过一些数值算例说明了云资源提供商合作博弈的非凸性,并表明了如何计算这个合作博弈的核心和Shapley值,为云资源提供商设计了一种合理的收益分配机制。本文的结果为研究IaaS(基础设施即服务)云资源提供商的合作行为提供了新的理论依据。
简介:为了解决M/M/c模型在实际运用中模拟精度不高及使用范围有限的问题,本文立足系统状态变化与输入率和服务率的关系,通过引入输入概率和服务度,构建依赖系统状态的递进式输入率和服务率。递进式输入率和服务率通过研究系统实际运行状况设定临界值,其中输入率分为两阶段,服务率分为三阶段。此外,结合递进式输入率和服务率及排队论状态转移过程构建了递进式M/M/c模型,并采用后确定法确定模型参数。递进式M/M/c模型是M/M/c模型的扩展形式,提高了M/M/e模型的模拟精度,在一定程度上拓展了模型的应用范围。最后,通过一个生活实例验证了递进式M/M/c模型的优化性和实用性。
简介:本文将改进的灰色GM(1,1)模型用于某油田年综合含水率的近期发展趋势研究。在平均相对误差达到最小准则下,研究了模型中的背景值参数A和边值修正项£对模型预测精度的影响。在此基础上,采用线性规划方法估计模型中的参数,基于遗传算法求解最佳背景值参数A和最佳边值修正项ε,以确保在相应的模型检验准则下预测的误差达到最小。结果表明,用改进的灰色GM(1,1)模型预测近期注水油田的综合含水率,预测值与实际值相对误差很小,预测精度很高,可以得到非常满意的结果。进一步的研究发现,改进的灰色GM(1,1)模型虽然近期预测精度很高,但研究长期的发展趋势是行不通的,为此又研究探讨了长期发展趋势模型。