简介:分别以Bemstain多项式以及准均匀B样条为基函数,来逼近线性高振荡常微分方程。通过求解基函数对应的系数方程组,得到方程的近似解。通过数值实验表明用准均匀B样条函数的逼近效果要比Bemstain多项式要好。
简介:本文利用随机变量的截尾方法扣条件三级数定理,研究了任意随机变量序列在矩条件下的一类强极限定理,改进了与此相应的一些结果的条件.
简介:运用Sehauder不动点定理,考察了边值问题{△^4u(k-1)=g(k,u(k-1),u(k),u(k+1),u(k+2)),k∈Z(1,N)u(0)=A,u(N+1)=B,u(N+2)=C,u(N+3)=D解的存在性.
简介:在分析证券市场中证券组合投资不确定性质的基础上,通过对Markowitz模型中证券期望收益与方差引入容差项来度量证券市场的不确定性,建立了不确定条件下具有容差项的Markowitz证券组合投资模型;分类讨论了容差的上界与下界所对应的两类有效组合前沿,得到了不确定条件下的证券组合投资模型的最优化解法及相关定理;最后给出了一个具体的数值实例.
简介:讨论了具有热储备和两个独立相同部件的平行系统在由常规错误引起失效下的渐进稳定性.首先,利用Banach空间的Volttera算子方程得到了非负动态解的存在唯一性;然后,利用强连续线性算子半群理论证明了系统正的动态解的存在唯一性,而由于初始值不在定义域内,故得到的是mild解.但在t>0时系统古典解存在唯一,所以此时mild解即为古典解.最后,利用线性算子半群稳定性的结果,证明了该动态解在范数意义下收敛到稳态解,进而得到了系统的渐进稳定性.