学科分类
/ 1
4 个结果
  • 简介:大量现象和研究成果都表明核素以泥沙颗粒为载体进行迁移转化.本文运用环境科学、水力学、泥沙工程学基本原理.巧妙结合MATLAB数学工具和数学方法,创造性地提出了一维非稳态瞬时排放核素的迁移转化模型,并与连续排放核素的情况进行了对比.

  • 标签: 核素 迁移转化 非稳态
  • 简介:研究节能刮板沉降箱式除尘可修复系统,运用泛函分析的方法,特别是Banach空间上的线性算子半群理论,证明了严格占优本征值的存在性,并通过分析本质谱界经过扰动后的变化,进一步表明在一定的条件下,系统的动态解以指数形式收敛于系统的稳态解.并研究了该系统算子预解式的特性.对任意给定的δ〉0,γ=a+bi,-μ+δ〈a1≤a≤a2,得到||R(γ;A+B)||=0.进而得到在Rγ≥a1的右半平面内相应于系统算子A+B的谱点由有限个本征值组成.

  • 标签: 严格占优本征值 本质谱界 扰动 指数稳定性 预解式
  • 简介:研究具有周期修复函数的机器人与其连带的安全装置构成的系统的可靠性.运用泛函分析的方法,特别是Banach空间上的线性算子半群C0理论,证明了系统的适定性,并通过分析系统本质谱和经过扰动后半群的本质谱半径的变化,给出解的有限展开式。并进一步证明,O是系统的严格占优本征值,系统的非零本征值至多有两个,从而表明系统解以指数形式收敛.

  • 标签: 机器人 周期修复函数 严格占优本征值 本质谱 扰动 指数稳定性
  • 简介:讨论了具有热储备和两个独立相同部件的平行系统在由常规错误引起失效下的渐进稳定性.首先,利用Banach空间的Volttera算子方程得到了非负动态解的存在唯一性;然后,利用强连续线性算子半群理论证明了系统正的动态解的存在唯一性,而由于初始值不在定义域内,故得到的是mild解.但在t>0时系统古典解存在唯一,所以此时mild解即为古典解.最后,利用线性算子半群稳定性的结果,证明了该动态解在范数意义下收敛到稳态解,进而得到了系统的渐进稳定性.

  • 标签: Volttera算子方程 C0-半群 渐进稳定性