学科分类
/ 1
3 个结果
  • 简介:核主成分分析KPCA是近年来提出的一个十分有效的数据降维方法,但它并不能保证所提取的第一主成分最适用于降维后的数据分类。粗糙集RS理论是处理这类问题的一个有效方法。提出一个基于KPCA与RS理论的支持向量分类SVC,利用RS理论和信息熵原理对运用KP(A进行特征提取后的训练样本进行特征选择,保留重要特征,力求减小求解问题的规模,提高SVC的性能。在构建2006年上市公司财务困境预警模型的数值实验中,以KPCA、RS理论作为前置系统的SVC取得了良好效果。

  • 标签: 核主成分分析 粗糙集 支持向量分类机 财务困境 预警
  • 简介:本文研究部分变系数动态模型,一些参数的值可以成为协变量的函数,并提出了参数和非参数函数系数的估计。本文提出一个基于支持向量分位数回归的部分变系数动态模型,及它的三步估计法和迭代加权最小二乘法估计模型的参数和非参数函数,提出的方法能被简单有效地应用到线性和非线性分位数回归光滑变量的高维情况。同时,本文也提出模型的惩罚参数、核参数的选择方法——交叉验证方法。

  • 标签: 部分变系数模型 分位数回归 支持向量机分位数回归 迭代加权最小二乘 超参数选择