学科分类
/ 1
3 个结果
  • 简介:根据支持向量机结构风险最小化原则和量子粒子群快速全局优化的特点,提出了干扰样式识别的QPSO-SVM算法。采用量子粒子群算法优化支持向量机参数,建立了干扰样式特征组分识别的模型,经过仿真试验,表明该算法具有识别率高,计算时间短的优点。

  • 标签: 干扰识别 量子粒子群 支持向量机
  • 简介:传统电子网络环境下的神经网络故障搜索算法,粒子群停滞于局部极值点,故障检测率低。提出电子网络环境下故障数据粒子群融合搜索算法,在基本PSO算法的基础上引入进化速度因子,得到改进的带扰动项PSO算法,避免算法停滞粒子处于局部极值点。在改进PSO算法中设计加速因子,使得每个粒子快速集合到局部最优解,以提高收敛速度。将模式搜索法与改进PSO算法相融合,引导粒子群搜索最优位置,实现电子网络环境下的故障数据搜索。为减少计算量,初始步长使用可伸缩的模式搜索法。实验结果表明,所提算法具有较低的误差、较高的收敛速度。

  • 标签: 电子网络 故障数据 粒子群 扰动项 初始步长 模式搜索
  • 简介:天基预警系统资源调度是一项重要而棘手的问题。对预警任务特性进行了分析,在此基础上提出一种基于关键点的任务分解方法,将其转换为可求解的组合优化问题;建立了问题的约束满足模型。针对该模型规模大、变量多的特点,设计一种具有快速求解能力的改进粒子群算法进行求解,该算法采取早熟避免机制,防止粒子群算法易产生的早熟现象。实验结果表明算法能够在给定时间内求得理想的调度方案。

  • 标签: 天基预警 任务分解 约束满足 粒子群