简介:引入“固态扩渗+轧制”的表面改性方式,即在研究镁合金薄板表面改性方法及工艺的基础上,采用固态粉末包覆热扩渗的方法,对AZ31镁合金薄板进行表面改性处理,获得研究目标材料;借助有限元软件Ls—DYNA模拟其冷轧过程,获得最优的轧制工艺参数并进行轧制实验,通过x.射线衍射(xRD)、金相显微镜、布氏硬度测量计、往复式摩擦磨损试验机和CorrTest腐蚀电化学测试系统检测材料表面的组织与性能。结果表明:轧制变形后的表面组织晶粒更加细小、均匀;耐磨性有所改善,表面硬度由HB61.4提高至HB63.5,摩擦因数由0.52变为0.6,表面摩擦磨损质量损失由0.33mg降低至0.26mg;表面耐腐蚀性能显著提高,其开路电位由-1.594V变为-1.574V,自腐蚀电位由-1.574V变为-1.38V,自腐蚀电流密度由6.2×10-3mA/cm2变为7.0×10-4mA/cm2。
简介:聚乳酸-乙交酯(PLGA)因具有优良的可降解性而在医用生物材料中得到了广泛应用,然而由于其表面缺乏细胞识别位点,以及存在亲水性和细胞亲和性不足等缺点,影响了细胞在其表面的粘附生长。为了得到生物功能和亲水性均较理想的聚乳酸类生物降解高分子,通过物理或者化学的方法在材料中引入胶原或多肽对其进行改性,赋予材料生物信号,以提高其生物功能,使其在组织工程支架的研究和临床应用更加广泛。该文主要对PLGA仿生改性的最新进展进行综述。
简介:对Cu-W-Ni-C与Ag-ZnO10触头材料的性能进行了对比和研究.在相对密度相同时,CuW-Ni-C材料的电阻率与Ag-ZnO10材料的电阻率接近,而硬度高于Ag-ZnO10材料的硬度.温升和通断能力试验结果表明:Cu-W-Ni-C材料在电力机车电器上完全可替代Ag-ZnO10材料.
简介:采用CCDS2000型爆炸喷涂技术,在水泵和水轮机等流体机械常用不锈钢0Cr13Ni5Mo上制备WC-12Co涂层。采用金相显微镜、显微硬度仪、SEM、XRD、电子拉伸试验机、冲蚀试验机等测试分析手段和研究涂层的微观组织、显微硬度、孔隙率、结合强度、抗冲蚀性能等,并分析涂层的抗冲蚀机理。结果表明:制备的WC-12Co涂层的孔隙率为0.63%,硬度为1305.6HV0.2,涂层与基体的结合强度达到130MPa。此外涂层抗冲蚀性为基材G0Cr13Ni5Mo不锈钢的4.76倍。冲蚀后涂层内部裂纹主要以穿晶断裂、沿晶断裂形式扩展。因此利用爆炸喷涂制备WC-12Co涂层在高含沙水流的流体机械零部件上有广泛的应用前景。
简介:以氩气雾化法制备的镍基高温合金FGH96粉末为原料,采用放电等离子烧结(sparkplasmasintering,SPS)工艺制备FGH96高温合金,同时在与SPS工艺相同条件下对原料粉末进行热处理,并采用热等静压(hotisostaticpressing,HIP)工艺制备FGH96高温合金,通过分析在不同SPS温度或不同保温时间下合金的微观组织与晶粒尺寸以及对比热处理后的粉末和热等静压合金的晶粒取向与晶粒尺寸,研究SPS镍基粉末高温合金的组织特征。结果表明,合金在SPS40min后达到高度致密。烧结温度为1070℃时,合金的显微组织为细小的胞晶和枝晶组织,碳化物析出相主要分布在晶粒内部、少量分布在晶界上,未观察到明显的原始颗粒边界(priorparticleboundaries,PPBs)。烧结温度为1170℃时,合金的显微组织为等轴晶晶粒,碳化物析出相沿PPBs分布,且存在明显的PPBs。放电等离子烧结工艺能在一定程度上消除原始颗粒边界,但改善合金晶粒尺寸的作用不明显。
简介:首先采用高浓度湿磨法制备超细WO3-CuO混合粉末,800℃空气中焙烧90min后得到CuWO4-WO3前驱体粉末,再通过氢气还原获得超细W-Cu复合粉末。将该复合粉末与直接还原超细WO3-CuO混合粉末所得的W-Cu复合粉末进行对比,并研究还原温度对W-Cu复合粉末的微观形貌、成分与粒度的影响。结果表明:经过30h高浓度湿磨,WO3-CuO混合粉末的中位径由44.88μm降至0.28μm,焙烧后得到的CuWO4-WO3粉末平均粒径小于0.7μm且分散良好。由CuWO4-WO3还原获得的W-Cu复合粉末细小、分散均匀,还原温度对其形貌影响不大,由WO3-CuO混合粉末直接还原得到的W-Cu复合粉末由大量W-Cu纳米颗粒构成,随还原温度升高,纳米W-Cu颗粒逐渐长大。
简介:以Fe2O3,MnO2,Co2O3和NiO为原料,采用料浆喷雾干燥、高温固相反应结合氧-乙炔火焰喷涂工艺在Q235A普碳钢基体表面制造红外辐射节能涂层。采用X射线衍射、扫描电镜及红外光谱对粉末和涂层的物相组成、微观结构及涂层的发射率进行分析;并采用拉伸法测定涂层与基体的结合力,采用水淬法检测涂层的抗热震性能。研究结果表明:涂层由混合尖晶石结构的铁氧体物相组成,涂层表面粗糙,半熔融态的颗粒均匀分布在碳钢基体表面;涂层在800℃全波段的红外发射率在0.7以上,相比传统刷涂工艺,节能涂层在低于5mm波段的红外辐射性能更优,说明氧-乙炔火焰喷涂制备的红外辐射涂层在高温阶段具有更强的辐射换热能力;涂层与普碳钢基体的结合强度为19.5MPa,是采用刷涂工艺制备涂层的结合强度的3倍以上;涂层试样1000℃水淬19次后表面未出现裂纹或脱落现象,说明涂层具有优异的抗热震性能。
简介:采用粉末冶金法,制备纳米SiO2颗粒(n-SiO2)、纳米SiC晶须(n-SiCw)和碳纳米管(CNTs)3种不同形态纳米相增强铜基复合材料,通过光学显微镜(OM)、扫描电镜(SEM)和球/盘式摩擦磨损试验机等测试手段研究纳米添加相对铜基复合材料显微组织、物理性能和摩擦学性能的影响。结果表明,纳米相可以显著提高铜基复合材料的硬度,其中n-SiCw的增强效果优于n-SiO2和CNTs;CNTs/Cu的减摩耐磨效果优于SiO2/Cu和SiCw/Cu;0.75%-CNTs/Cu(质量分数)复合材料具有高的硬度、优良的减摩耐磨性能,是综合性能最佳的复合材料。
简介:用粒度为63μm和14μm的SiC粉末为原料,在注射温度和注射压力分别为160℃和70MPa、粉末装载量(体积分数)为63%的条件下,获得SiCp注射坯,经过溶剂脱脂和真空热脱脂以及1100℃/7h的真空预烧结后,在1000℃、N2气氛下进行Al合金熔渗,制备高体积分数63%SiCp/Al复合材料电子封装壳体。研究表明,熔渗组织均匀、致密,SiC颗粒均匀分布在Al基体中。熔渗时需要严格控制熔渗时间,熔渗时间超过10min后会导致坯体被Al合金熔体过度熔渗,从而在复合材料表面产生Al合金层,时间越长,Al层厚度逐渐增加。最终制得的高体积分数63%SiCp/Al复合材料封装壳体的尺寸精度优于0.3%,其热物理性能优异,热膨胀系数和热导率分别为7.2×10-6K-1和180W/m·K,密度为3.00g/cm3,能够满足电子封装材料性能的要求。
简介:以金属铜箔和镍粉为原料,采用涂覆法制备出Ni—Cu多孔薄膜。采用场发射扫描电子显微镜(FE-SEM)、x射线衍射仪(XRD)、原予力显微镜(AFM)等设备对所制Ni-Cu薄膜的显微结构、物相组成进行表征。通过压泡法对所制多孔薄膜的通量及孔径进行测试,并探讨薄膜的成孔机理。研究表明:所制备Ni-Cu多孔薄膜厚度约为50μm,平均孔径约10girl;涂覆面通过Ni粉的松装烧结形成多孔结构;铜箔一测的孔是由于Kirkendall效应所产生的空位沿着晶界扩散在表面聚集而成。