简介:面对大规模的路网OD客流分布的"长尾效应",提出一种多分辨率多粒度时空特征提取的短时客流预测模型,以解决稀疏OD矩阵中不同量级OD客流预测精度不高的问题.将离散小波变换引入OD矩阵特征提取,结合CNN获取多分辨率下空间特征;构建多粒度历史OD客流矩阵序列,利用ConvLSTM网络提取OD矩阵长期的周期依赖性及短时的相邻时段依赖性.以北京地铁为例,分析结果表明:该模型在整体预测精度方面较其他基线模型的均方根误差RMSE提升7.4%以上;模型内部消融实验证明,多分辨率多粒度的结构对高、中、低3种量级的OD预测均有提升作用,且对高量级OD预测的RMSE提升12.5%以上.以杭州地铁为例对模型进行稳定性验证,结果表明:该模型在不同数据集下的预测结果明显优于其他基线模型;在工作日/非工作日、高低峰/平峰等场景下的适用性分析均能取得稳定的预测效果.