简介:为了加强磁流变液(MagnetoRheologicalFluid,MRF)制动器的制动性能,设计一种多盘式MRF制动器,建立多盘式MRF制动器有限元模型,对多盘式MRF制动器的磁路做磁场仿真分析。仿真结果表明,多盘式MRF制动器工作区域的磁通密度值随着励磁电流值的增长而增长;多盘式MRF制动器工作间隙的影响仅在一定范围内有效,所以多盘式MRF制动器的结构设计和磁路设计合理。搭建MRF制动器试验台,试验结果表明,多盘式MRF制动器的实际输出力矩为237.2Nm,而普通汽车紧急制动所需的最大制动力矩为200Nm,普通制动所需的制动力矩小于200Nm,所以多盘式MRF制动器输出力矩完全满足微型汽车制动的需要。
简介:摘要:分布式驱动电动汽车可控自由度高、响应速度快、底盘线控集成度高、车辆结构紧凑,是实现先进车辆动力学控制技术的最佳平台。线控转向系统、线控驱动/制动系统、线控悬架系统等线控系统,制动防抱死系统、车道保持系统、自适应巡航系统、变道辅助系统等不同等级的辅助驾驶系统的广泛使用,造成车辆底盘控制中出现冗余及冲突。分布式驱动结构形式为多线控系统及线控系统与辅助驾驶系统间的高效、协同控制带来了更大的可能。基于此,从集成控制策略架构、纵-横向动力学集成控制、横-垂向动力学集成控制、纵-垂向动力学集成控制、纵-横-垂向动力学集成控制、容错控制、分布式驱动智能电动汽车底盘动力学集成控制等方面重点阐述分布式驱动电动汽车底盘集成控制技术的最新进展。通过对文献分析总结可以看出:基于分层式控制架构的分布式驱动电动汽车动力学集成控制是当前研究重点;一体化集成控制目标、高级辅助驾驶系统与底盘控制系统深度融合及个性化集成控制等问题亟待解决。研究成果能为分布式驱动电动汽车底盘高性能集成控制技术发展提供参考。