简介:以Fe、Al元素混合粉末为原料,采用粉末冶金法,通过偏扩散/反应合成—烧结,制备Fe-Al金属间化合物多孔材料。根据烧结前后多孔试样的质量变化,并结合XRD、SEM、EDS等测试手段,对烧结过程中多孔试样基础元素挥发行为及孔结构变化进行研究。结果表明,真空烧结元素粉末制备Fe-Al多孔材料过程中,最终烧结温度为1000℃、保温4h时,Fe-Al多孔试样质量损失率为0.05%,而最终烧结温度为1300℃时质量损失率达到10.53%;随着最终烧结温度升高,合金元素沿孔壁表面挥发程度增大,导致Fe-Al多孔试样的孔径、开孔隙率和透气度变大。采用MIEDEMA模型和LANGMUIR方程,对真空烧结过程中的质量损失原因进行理论分析,表明Al的挥发是导致多孔试样的质量和孔结构变化的主要原因。
简介:以硝酸铟为原料,用氨水做沉淀剂,采用水解沉淀-水热法制备In2O3的前驱体In(OH)3,用扫描电镜、X射线衍射仪及激光粒度分析仪对产物的结构、形貌和粒度进行表征。结果表明,水解沉淀产物为立方相In(OH)3,呈短棒状团聚体。水热处理过程中,产物的晶型、形貌和粒度受Ostwald熟化机制和相转化机制的影响。当水热温度低于280℃时,首先发生Ostwald熟化机制,In(OH)3颗粒形貌由短棒状转变为长方体,而物相不发生变化。当水热温度高于280℃时,除发生Ostwald熟化机制外,还存在相转化机制,产物形貌先由棒状转变为长方体,接着转变为多面体,且物相由立方相的In(OH),转变为斜方相的InOOH。
简介:利用赤泥、钢渣和滑石为原料,在没有特殊添加剂的情况下,经过模压成形与烧结制备赤泥/钢渣陶瓷材料。通过高倍电镜、差热分析与x射线衍射对材料的形貌与结构进行观察与分析,并测试吸水率与抗弯强度,研究原料的成分与粒径对陶瓷材料性能的影响。结果表明,赤泥/钢渣陶瓷材料的主晶相为透辉石和钙长石。原料粉末粒度越小,陶瓷的性能越好;赤泥用量为70%时材料的性能最佳。综合考虑陶瓷砖块的性能与能源消耗,采用烧结温度为1170℃,选用粒径小于74gm的原料粉末,在赤泥、转炉钢渣和滑石的用量分别为60%~70%、20%~30%~H10%条件下制备赤泥/钢渣陶瓷材料,材料的显气孔率和吸水率都达到建筑陶瓷的国家标准(GB/T4100.2006)技术要求的0.73%和0.03%,抗弯强度超过88MPa。
简介:通过热压烧结工艺制得了(SiCp+C)/MoSi2复合材料,测试分析了材料的组织结构、室温和高温力学性能.结果表明:(SiCp+C)/MoSi2复合材料主要由MoSi2(大量),α-SiCp(大量),Mo5Si3(多量)和β-SiC(少量)组成,密度为5.12g/cm3,相对密度为91%;增强相的粒径<30μm,体积分数为39%.其室温硬度、抗弯强度和断裂韧性分别为12.2GPa,530MPa和7.2MPa·m1/2;材料在800℃的维氏硬度为8.0GPa,1200和1400℃的抗压强度分别为560MPa和160MPa.与非增强MoSi2相比,材料的各种力学性能都有大幅度的提高.
简介:在由氰酸盐(KCNO和NaCNO)与碳酸盐(K2CO3和Na2CO3)组成的盐浴中添加适量稀土La,对35钢材料进行盐浴碳氮共渗,对涂层的显微组织、涂层的厚度、显微硬度沿层深的分布以及涂层的耐磨性进行测试与分析,研究稀土La对35钢盐浴碳氮共渗的影响。结果表明:在盐浴中添加稀土La可显著提高碳氮共渗层的厚度和表面硬度;在温度为560℃、时间为2h条件下进行盐浴碳氮共渗时,添加稀土La可增加化合物层的厚度,稀土添加量(质量分数)为5%时化合物层最厚;添加稀土还可提高涂层硬度,在575℃/2h、添加5%稀土条件下盐浴碳氮共渗后,试样表层硬度HV0.01达到最大值835,且耐磨性显著提高,与常规盐浴碳氮共渗相比,质量磨损降低38.4%。
简介:采用无压烧结法制备含CeO2的Mo/Al2O3材料,用MM-200型环-块式摩擦磨损试验机测试该材料在滑动干摩擦条件下的磨损行为,通过X射线衍射(XRD)和电子探针对其微观结构和磨损后的形貌进行研究和分析。结果表明,添加CeO2的烧结样品中出现CeAl11O18相,且随CeO2含量(体积分数)增加,CeAl11O18逐渐增多,Al2O3相应减少。当CeO2的体积分数为6%时Al2O3全部由CeAl11O18取代;CeO2的添加使Al2O3和CeAl11O18相边界处均呈现圆钝形貌,并且存在Mo、Al、O的相互扩散区域。磨损形貌表明,1730℃烧结的样品中出现摩擦转移层,当CeO2含量达到4%时,该摩擦转移层大量出现,从而改善材料的耐磨性。
简介:以钼粉及氧化锆粉为原料,采用不同的烧结工艺参数,在常压氩气气氛下烧结制备50%Mo-ZrO2金属陶瓷。采用四电极法测量该金属陶瓷的高温电导率,在1580℃下进行钢液和碱性熔渣侵蚀实验。结果表明:在烧结温度为1600~1650℃,保温时间为2~4h的条件下,随保温时间延长或烧结温度升高,烧结体更加致密,孔隙率下降;因而金属陶瓷的电导率提高,耐钢液和熔渣侵蚀性增强;在1600℃、保温4h条件下烧结的试样密度最大(6.49g/cm^3),高温电导率最高(1600℃下的电导率为101S/cm),耐钢液和熔渣侵蚀能力最强。钢液对金属陶瓷的侵蚀主要为Fe和Mo的相互溶蚀,熔渣对金属陶瓷的侵蚀主要作用于ZrO2陶瓷相,熔渣中的Al2O3取代金属陶瓷中的ZrO2。熔渣侵蚀过程中,CaO与金属陶瓷中的ZrO2发生反应生成高熔点CaZrO3相,阻止熔渣对金属陶瓷的进一步侵蚀。
简介:以气雾化316L不锈钢球形粉末为原料,通过压制、烧结工艺制备多孔过滤材料。在烧结温度、保温时间等其他制备工艺参数一定的情况下,着重分析粉末粒径、压制压力对多孔材料孔隙度、最大孔径和透过性能的影响规律,建立其相互关系方程。结果表明:多孔材料孔隙度主要受压制压力的影响,随压制压力的增大而减小,孔隙度的1.9倍与压制压力的平方根呈指数关系。相比于压制压力,多孔材料的最大孔径主要受粉末粒径的影响,随粉末粒径的增大而增大,两者之间呈线性关系;多孔材料的相对透气系数受粉末粒径和孔隙度的共同影响。在孔隙度一定的情况下,相对透气系数与粉末粒径的平方呈线性关系。
简介:采用化学镀的方式预先在石墨表面镀镍,再镀铜,制备了具有双镀层的铜/镍包覆石墨复合粉末,并通过放电等离子烧结(SPS)方式制备高性能的石墨/铜复合材料。通过SEM、EDS、TEM和XRD分析手段对复合材料的形貌和微观结构进行观察和分析,并研究镀层的镍含量对复合材料力学性能的影响。结果表明:在石墨表面镀镍可改善石墨与铜的界面结合状态,使得界面结合紧密,石墨与铜基体的界面由Cu/graphite界面转变为Cu/(Ni+Ni3P)界面和graphite/(Ni+Ni3P)界面,而且有助于石墨颗粒在复合材料中均匀分布。石墨表面化学镀镍还可显著地提高石墨/铜复合材料的致密度、硬度和抗压强度,而且随镍含量增加,其力学性能逐渐提高。当在复合材料中镍含量为10%时,复合材料的致密度、硬度和抗压强度分别达到99.68%、64.58HB和281.04MPa。
简介:采用在还原碳化法制备WC粉末前添加稀土氧化物Y2O3或CeO2,以及在WC与Co粉末混合球磨时加入该稀土氧化物两种不同的方式,在WC-10Co硬质合金中添加稀土元素,利用金相显微镜和扫描电镜观察稀土硬质合金的组织形貌与显微结构,采用X射线衍射仪(XRD)和电子探针对合金的相成分与微区成分进行分析,并测试合金的硬度、断裂韧性与磁性能,研究稀土及其添加方式对硬质合金结构与性能的影响。结果表明,无论以何种方式添加Y2O3或CeO2,最终制备的硬质合金中稀土元素都与氧共存,并以球形颗粒的形式弥散分布于硬质合金的钴粘结相中。稀土硬质合金中WC晶粒球化趋势明显,WC/WC的邻接度由0.6降低至0.39,断裂韧性由12.8MPa?m1/2提高至16.7MPa?m1/2。球形、弥散分布的稀土氧化物颗粒会破坏合金结构的连续性,导致合金强度降低。
简介:采用两步熔盐法于900~1000℃下在C/C复合材料表面制备MoSi2-SiC复合涂层,即在含仲钼酸铵的熔盐中制备Mo2C涂层,然后通过熔盐渗硅生成MoSi2-SiC复合涂层。用X射线衍射(XRD)、扫描电镜(SEM)与能谱分析(EDS)等方式研究涂层的组织结构,并测试涂层在1500℃下的抗氧化性能和抗热震性能。同时对涂层氧化后的组织结构进行分析。结果表明:复合涂层主要由MoSi2和SiC两相组成,涂层与C/C基体结合处仅有少量未反应的Mo2C。涂层整体致密,与基体结合良好,均匀地包覆整个基体表面,厚度约为100μm。涂层样品在1500℃的静态空气中氧化42h后,涂层表面仍保持完整,质量损失率仅为2.79%。1500℃下经历30次热震实验后,样品的质量损失率为1.96%,涂层具有良好的抗氧化和抗热震性能。
简介:以Ti-Al的3个化合物相(Ti3Al、TiAl和TiAl3)及Ti3Al8Mn为对象,采用密度泛函的赝势平面波法,在优化驰豫的基础上计算其电子结构和弹性模量,系统分析成分对各相电子结构的变化及脆性的影响。结果表明:Al含量逐步增多导致Al2p—Ti3d成键并抑制Ti—Ti键,使共价键以及成键的各向异性增强,因而使合金脆性增大;Mn替代Al位掺杂后,可减少Al—Al共价键,抑制Al2p—Ti3d成键并增强Mn与Ti的3d电子层杂化程度,降低由Al—Al共价键和Al2p—Ti3d杂化键形成所带来的键的空间各向异性和高位错能垒,进而改善合金的室温脆性。
简介:采用DH.2080型超音速等离子设备将粒度53~106lam的高铝铜合金粗粉喷涂到45”钏表面制备涂层。在高铝铜合金粉术中加入微量元素Ce和B,研究Ce和B对高铝铜合金粗粉的超音速喷熔性能以及涂层组织结构的影响。结果表明:末加入元素Ce和B的涂层氧化严重,尤其是在界面处聚集大量氧化物,涂层和基体不能实现有效结合,涂层中较多的氧化物和孔隙隔离层流片熔结,并且涂层成分偏析严重。加入微量稀土元素Ce和B后,喷熔层组织细小均匀,成分分布均匀,涂层氧化程度大大减小,涂层和基体结合良好。Ce和B的加入还可改变涂层组织相的彤成规律,即由原来的非平衡结晶方式转变为平衡结晶方式。此外,Ce和B的加入使涂层硬度由362HV提高到432HV。
简介:采用水热法制备表面活性剂聚甲基丙烯酸-季戊四醇四-3-巯基丙酸酯(PTMP-PMAA)修饰的具有光热效应的纳米WO3-x粉末,通过X射线衍射(XRD)分析、透射电镜(TEM)观察、X射线光电子能谱(XPS)分析、傅里叶变换红外光谱(FT-IR)分析以及紫外-可见吸收光谱(UV-Vis谱)分析及光热性能测试等,研究所得纳米粉体材料的结构及其在不同浓度与pH值下的光热性能。结果表明,水热法制备的WO3-x粉末为球形的非整比结构的W17O47,粒径小于10nm。随WO3-x的pH值降低或质量浓度降低,粉末的紫外吸光度增加,光热效应提高。pH值为6.4、质量浓度为800μg/mL的WO3-x经光热转换后,可实现在5min内约19℃的温度上升。考虑到人体体温为37℃,肿瘤部位的pH值为6.0~6.5之间,此质量浓度下纳米WO3-x粉末可用于光热治疗并实现对肿瘤细胞的杀伤效果。
简介:通过添加W粉或C粉调整WC原料粉末的总碳含量(质量分数)为6.04%~6.16%,采用低压烧结法制备WC-9Ni-1Cr细晶硬质合金。采用光学金相显微镜、X射线衍射、扫描电镜等,研究碳含量对WC-9Ni-1Cr细晶硬质合金组织结构及性能的影响。结果表明:在WC-Ni系合金中添加适量的Cr元素,得到无磁WC-Ni硬质合金,并且其无磁特性不随合金中碳含量的变化而发生转变。WC粉末的总碳含量为6.04%~6.16%时WC-9Ni-1Cr细晶硬质合金为二相区的正常组织,只存在WC相和Ni相,没有石墨夹杂或η相;而且在此二相区范围内WC的碳含量变化对WC-9Ni-1Cr细晶硬质合金的耐腐蚀性没有明显影响。随WC粉末的碳含量增加,合金硬度(HRA)与密度都逐渐降低,但降低幅度较小,而合金的抗弯强度逐渐提高。碳含量由6.04%增加至6.16%时,抗弯强度由2250MPa提高到2850MPa,提高26.6%。
简介:采用真空热压烧结法,以Fe基元素混合粉末和MBD。人造金刚石为原材料,通过改变工艺参数,制备锯切花岗岩用Fe基孕镶金刚石锯片磨头。采用SEM、XRD、布氏硬度仪、万能力学试验机和MRH-3销盘式摩擦试验机研究不同烧结工艺制备的磨头结构、力学性能和摩擦磨损行为。结果表明:提高烧结温度或烧结压力可使磨头胎体合金化程度增大,金刚石和胎体由机械包镶变为冶金结合,力学性能得到提高。与680℃/15MPa/4min和760℃/23MPa/4min烧结工艺相比,760℃/15MPa/4min工艺所得磨头胎体与金刚石具有最佳的耐磨匹配性和界面结合特性,摩擦磨损性能最好。