简介:研究了高阶非完整系统的共形不变性与Noether守恒量,给出了与高阶非完整系统相应的完整系统的共形不变性的定义及其确定方程,通过系统共形不变性与Lie对称性的关系,推导出了系统运动方程具有共形不变性并且是Lie对称性的共形因子,利用限制方程和附加限制方程,给出了高阶非完整系统的弱Lie对称性和强Lie对称性的共形不变性,得到了共形不变性导致的Noether守恒量,举例说明了结果的应用.
简介:分析了一个新混沌系统的超混沌动力学行为,给出了这个未知参数的超混沌系统的自适应控制和同步问题的数值模拟结果.运用相图、分岔图、Lyapunov指数谱和庞加莱截面图,返回映射和功率谱等揭示了系统混沌行为的普适特征,基于Lyapunov稳定性理论,采用自适应控制方法将系统的混沌运动控制到一个不稳定的平衡点.此外,设计自适应控制律以实现超混沌系统的状态同步,仿真结果表明所提出的方法的有效性.
简介:主要介绍一种基于Modelica语言的泵车臂架系统多领域耦合动力学仿真建模方法.泵车臂架系统是典型的机械、液压、控制等多领域耦合系统,在其频繁的启动、制动过程中,变幅机构和液压元件均承受着强烈的冲击和振动.传统的单一领域动力学建模方法很难全面反映泵车臂架系统的整体动力学性能,然而通过几种仿真工具进行联合仿真的方法亦难免存在建模效率、仿真速度等方面的问题.针对以上不足,以某型泵车为研究对象,提供一种基于多领域统一建模语言Modelica的机械、液压及控制等多场耦合的泵车臂架系统动力学建模方法,并对其工作过程进行了动态仿真.该模型具有模块化、层次化、规范化和参数化,以及仿真模型互操作性和重用性强的特点.
简介:基于经典的Magnus级数方法提出了一个简单有效的四阶近似积分格式,用于求解一般非线性动力学系统.它是一种几何积分方法,能保持精确解的许多定性性质,并且该方法只包含二个或三个指数矩阵的乘积,避免了通常的Magnus级数方法涉及的复杂的交换子运算.数值算例显示该方法是有效的。
简介:研究完整力学系统的Noether对称性、Lie对称性和形式不变性,以及由它们导致的Noether守恒量、Hojman守恒量和一类新型守恒量。
简介:研究了一般非完整系统虚位移关系的不确定性问题与非线性问题,提出了本质线性非完整约束和本质非线性非完整约束的概念,证明并给出了各种虚位移定义和交换关系的合理适用范围.研究表明,在本质线性非完整系统中,各种虚位移定义和交换关系是合理的,可以在数学与力学上得到统一.然而,在本质非线性非完整系统中,已有的虚位移定义和各种交换关系会导致数学或力学上的矛盾.这些矛盾来源于对本质非线性非完整约束的物理实现不清楚.