简介:【目的】明确各部位不同颜色鲜烟叶的高光谱特征及其与颜色参数的关系,为科学判定烟叶成熟度提供参考。【方法】研究了各部位烟叶颜色参数和高光谱特征的变化规律,对颜色参数和高光谱特征参数进行了相关分析和回归分析,基于高光谱特征参数建立了颜色参数回归模型,并对其进行检验。【结果】随着落黄程度的提高,颜色参数L、b、C呈不断增大的趋势,a值呈先减小后增大的趋势,H°呈不断减小的趋势;高光谱特征参数随烟叶颜色的改变呈现规律性的变化;高光谱特征参数与各颜色参数有显著或极显著相关性,基于高光谱特征参数建立的颜色参数回归模型预测效果较好。【结论】利用高光谱技术对鲜烟叶颜色参数进行分析是可行的。
简介:人工诱发不同病级烟草普通花叶病,接种后第3d采用ASDFieldspecFR2500光谱仪对叶片进行光谱分析和相应色素含量测定。运用单变量线性或非线性拟合分析技术,选取部分样本建立色素含量估测模型,并利用其余样本对模型进行精度检验。结果表明,以蓝边面积(SDb)为自变量的线性模型是估测叶绿素a含量的最佳模型;以蓝边面积(SDb)为自变量的指数模型是估测叶绿素b和叶绿素a+b含量的最佳模型;以绿峰幅值(Rg)为自变量的线性模型是估测类胡萝卜素含量的最佳模型,其估测叶绿素a,叶绿素b,叶绿素a+b和类胡萝卜素含量的相对误差为-9.131%,-22.975%,-11.408%,-5.855%。
简介:为适应快速分析烟草中植物色素含量的需要,应用傅立叶变换近红外(FT-NIR)光谱法测定了77个具有代表性的烟草样品的光谱数据,利用偏最小二乘法,以样品的光谱数据和对应的化学测定值为基础,建立了预测烟草中叶黄素、β-胡萝卜素和其它类胡萝卜素含量的数学模型。结果表明:模型优化后,模型的相关系数(R)分别为0.9802、0.9962和0.9751,预测标准偏差(RMSEP)分别为0.00947、0.0607和0.0446。该方法简便、快速、不破坏样品,可用于大批量烟草样品中叶黄素、β-胡萝卜素和其它类胡萝卜素的快速测定。
简介:运用四种不同的光谱范围选择方法来建立烟草中水溶性糖的近红外定量模型,发现模型的交互验证系数、交互验证均方差和预测均方差有明显的差异。通过对烟草中水溶性糖的分子结构分析,结合傅里叶变换近红外漫反射光谱的特性,初步确定烟草水溶性糖近红外定量模型的建模光谱范围,以交互验证系数和交互验证均方差为评价指标进一步优化光谱范围,可以得到烟草水溶性糖在近红外定量模型中的最佳光谱范围为3850-5010cm^-1、5720-7010cm^-1和7760-7980cm^-1,总糖和还原糖定量模型的交互验证系数、交互验证均方差和预测均方差分别为0.989、0.787、0.565和0.982、0.801、0.693。
简介:以不同产地、等级的国产白肋烟和马里兰烟为试验对象,选取具有代表性特征的上部和中部样品49份,测定其近红外光谱和烟草特征指标,用一阶导数和平滑处理光谱后再进行归一化处理,各指标检测值也进行归一化处理,然后采用(ProjectionofBasingonPrincipalComponentandFisherCriterion)投影方法分析样品间部位和产地的相似性。结果表明:1)近红外光谱和特征指标两条途径均可判别烟叶部位与产地;2)根据方差贡献率,最能体现部位特征的因素是生物碱和亚硝胺指标,最能体现产地特征的因素是亚硝胺指标;3)相似性判定可用于工业等级间替代和配方微调。
简介:为建立基于烟叶麦角甾醇含量结合近红外光谱分析技术的初烤烟叶霉变预警模型,以2015年和2016年云南5个地区2个等级(B2F和C3F)初烤烟叶为研究对象,调节烟叶含水率为18%,在28℃,RH80%条件下以30天为实验周期,进行烟叶霉变实验。每3天取一次样,采集近红外光谱数据并检测样品麦角甾醇含量。建立第0d初烤烟叶样品近红外光谱主成分监测模型并提取HotellingT-2统计量,预测第3天至30天初烤烟叶样品近红外光谱数据的HotellingT-2统计量,对比分析肉眼观察和近红外类模型对烟叶霉变的预警效果。结果表明:1)烟叶霉变过程中,麦角甾醇含量逐渐增加后逐渐降低,当肉眼可见时,麦角甾醇含量较初始值增加4.66-23.38倍;2)基于上述监测模型,13个霉变烟叶样品中,提前预警天数为6天的样品2个,提前预警天数3天的样品7个,当天预警的样品4个,7个未发生霉变烟叶在30天的监测周期内均未出现预警,预测准确率100%。以上结果表明该方法能方便快速地实现对初烤烟叶霉变的预警,具有较好的实用价值。