简介:一种新的选择性堵塞方法用来改善体积波及效率,从而提高油田的采收率。此方法建立在“盐析”的理论基础上,即在水中加入某种非电解质,使水中的电解质溶解度下降。在这种新的段塞驱油过程中,先注入浓缩盐水预冲洗,然后注入一种或多种水溶性酒精(如乙醇)到油藏中。酒精和卤水的混合将引起盐析。由于酒精和浓缩卤水对水的高相渗透性使之易于进入水浸地带。固体的析出可部分或全部堵塞高渗透地带,导致后置液流进含油饱和度高的低渗透带。因此油藏的大部分就为这种流体所波及,油藏的体积波及效率和采收率将不言而喻地得到改观。在均质填砂模型流动试验中可以观测到渗透率可以下降到70%,在非均质填砂模型流动试验中,渗透率将下降到原卤水的50%。试验结果说明,该方法能够多采出15%的原始石油地层储量。与其它选择性渗透率降低的技术相比,此方法有许多优点。它可应用于深部或浅部油藏,另外,如果有必要的话,可通过低盐饱和度的卤水注入来恢复高渗透带的渗透率。
简介:原油采收率不仅与原生水饱和度有关,而且与水、气和化学驱后的残余油饱和度有关。而这些流体各自的原始饱和度和残余饱和度又与其岩石物性和油藏条件如温度、油藏压力和上覆岩层压力等有关。目前的研究旨在推导出一种以上述参数(如常规和特殊岩心分析研究中测量的参数)为基础预测原油采收率的经验模型。一项基于100块砂岩和碳酸岩样品数据库所进行的初步研究得出了一个极好的特征关系式,其相关系数为R2>0.95。这种相关关系对各油藏是特异的,因此本研究的最终目的就是开发出每个油藏的原油采收率特征图版。这种特征图版可用于提高采收项目中水、气和化学驱的设计。为了将这种相关关系推广到不同的地层流体和地层,采用了Klinkemburg和Forchhenimer关系式。该关系式为缺乏数据时确定油藏的原油采收率提供了一种工具。
简介:在尼日尔三角洲正在开发的Okan油田利用三维地震和测井资料以及通过实际观察和理论研究得出的有效概念模型来显示泥岩滑抹正断层的三维几何形状。地震资料显示断层在倾向上具有明显分节性,并推断张性转换带(extensionalrelays)中存在滑抹泥岩。根据测井资料识别出了整个油田范围的岩性地层。并且在有些情况下,当钻孔穿过断层时,利用测井资料还可以定量确定断层带内泥岩的滑抹量。可以利用概念模型解释断层几何形态的关键细节和泥质断层岩的分布,这是三维地震资料集的常规分辨率所无法实现的。将地震资料、测井资料和概念模型相结合,可以制定一套工作流程来确定断层的几何形态,评价滑抹泥岩的属性及其演化特征与断层落差、相应泥岩单元的厚度和泥岩之间砂岩单元厚度的关系。其结果是形成了一种断层结构可视化和断层岩解释新技术,这两方面均能构建真实的断层并置关系图,亦能充分客观地分析储层中的泥岩滑抹。
简介:众所周知,难以用碳酸盐岩储集层测井资料准确预测渗透率。在哈萨克斯坦西部的Tengiz油田是一个巨型碳酸盐岩储集层,最近研究出一种根据生产测井(PLT)的流量计算视渗透率(APERM)的方法。将这个流量刻度的视渗透率综合到静态地质地层模型,最佳地解决了如何将动态PLT资料最佳地综合到一个储集层模型中长期存在的问题。最近,使用APERM建立的一个储集层模型极大地改进了早先那些只用基于静态测井资料的渗透率变换构成的地层模型。常规测井资料的渗透率变换被设计用于描述基岩渗透率,而不是描述由碳酸盐岩储集层中常见的裂缝和孔洞孔隙产生的超量渗透率。APERM方法用于准确描述总渗透率(基岩+超量)和用质量差的测井资料或有限的测井资料识别老井中不准确的渗透率预测。在新打的井中,由于有现代测井资料,基于测井资料的渗透率预测会更准确,但由静态测井资料的连续取值识别和渗透率的定量评价仍成问题。用已知的流动压力、静态压力、井性质、储集层性质和流体性质,通过求解达西定律计算一个层段的视渗透率。该方法虽做出几个简化假设,但产生的误差都是次要的,该方法对使用基于常规静态测井资料的变换渗透率有所提高。该方法因能够用多流量PLT求解粗粒地层压力而有所增强,使用这些压力作为求解渗透率的输入值。然后,将由PLT得到的视渗透率作为一个基准来调整使用一个可变的乘数由静态测井资料推导的变换渗透率。这种方法具有保存电缆测井原始精细刻度不均匀的优点,同时对它们的大小进行校正。未来的计划将研究APERM和岩石类型之间的对应性和用裸眼井测井资料的统计变换。基于测井资料的变换可被用于没有PLT资料的井或井段,提高储集层模型中渗透率的精度。
简介:大量研究都表明连通性是决定提高石油采收率工艺成功的最重要因素之一。井间连通性评价有助于识别流动遮挡和通道并为油藏管理和开采优化提供方法。基于多井产能指数(MPI)的方法可根据注入/开采数据提供成对井之间的连遇性指数。从计算的连通性中分离出井位、表皮系数、注入流量和生产井井底压力等影响,这种方法所获得的非均质性矩阵就只代表有关地层的非均质性和可能的各向异性。这种MPI方法原先是为井数有限的有界油藏设计的。我们在本文扩展了这一MPI方法,以便处理有大量井和无界油藏的情形。为了处理无界油藏,我们通过为油藏系统增添一口虚拟井以及修改孔隙体积而对这一MPI方法作了改进。我们在有漏失带或分隔带的两个不可测体积(即非封闭)系统中使用了这些进改,同时发现利用这种虚拟井的做法可以准确地预测有关油藏的动态。如果具有大量的井,计算非均质性矩阵所需的时间可能使问题变得棘手。因此,我们采用了一种基于各井井位的模型简化对策,称之为开窗口。这项技术忽略了对油藏动态影响较小的参数。我们将开窗口应用于具有大量井(16口和41口井)的两个实例。通过选择适当的窗口尺寸,我们发现对于所研究的实例,可以准确地预测油藏动态(疋值大于99%),并使中央处理机(CPU)的时间减少到20分之一。这里介绍的做法能使我们为简单的MPI方法可能很难适用的复杂情形提供井间连通性的真实解释。这些做法与MPI方法的结合,能够为优化井网和注水参数而快速有效地模拟现场数据。