简介:用密度泛函理论,在B3LYP/6-311++G**计算水平下分别对尿嘧啶所有的气相、液相、过渡态和质子转移异构体的结构进行全优化,获得它们在气相和水相中的几何结构和电子结构,PCM反应场溶剂模型用于水相计算.结果显示:在气相和水相中,水参与反应降低了互变异构质子迁移的反应活化能,对互变异构质子迁移的反应起到催化作用,但是没有改变各异构体的稳定性顺序.同时研究了尿嘧啶各烯醇式水助质子互变异构的反应机理,提出了尿嘧啶各烯醇式互变异构质子迁移的反应为平面六元环的过渡态结构.探讨了溶剂化效应对互变异构体的几何结构、能量、电荷分布以及互变异构反应活化能的影响等.
简介:金属有机配合物在磁性、荧光、分子吸附和半导体等多功能材料方面有着潜在的应用价值.通过水热方法合成了一种新型零维铈(Ⅳ)配合物ECe(dipic)。]·2(Hpa)·2H2O(2,6一Hzdipic=2,6一吡啶二羧酸,pa=对氨基吡啶),并通过X-射线衍射、元素分析、红外光谱和热重对该化合物进行了表征.该化合物属于单斜晶系,P2,/f空间群,a=1.09437(10)nm,6—2.05263(18)nm,c=1.58776(14)nm,β=106.0850(10)°,Z=4,V=3.427(1)nm2,Dc=1.670g/cm。,Mf一861.72,A(MoKa)=0.071073nm,μ=1.41mm-1,F(000)=1728,R=0.0396,wR一0.1073,符合,〉2d(I)的独立衍射点4997个.铈(1V)离子被3个完全去质子化的羧基围绕,整个分子实体显负电,平衡电荷由质子化的对氨基吡啶提供.在该配合物中,N—H…O和o~H…O氢键对增强配合物的稳定性起了重要作用.
简介:利用卟啉(Heroin)具有模拟酶的功能,与多壁碳纳米管(MWCNTs)构建了一种新型的过氧化氢(H2O2)生物传感器。首先,利用Hemin与MWCNTs之间的π-π键作用,在超声分散下制备Hemin/MwcNTs纳米复合物;采用滴涂技术并在nafion的作用下将其固载在电极表面,制得该H2O2生物传感器(nafion/Hemin/MWCNTs/GCE)。采用紫外-可见分光光度法(uV—Vis)对合成的纳米复合物进行了分析;采用扫描电镜(SEM)对电极的表面形貌进行了表征;采用循环伏安法和计时电流法考察了该修饰电极的电化学行为;并对传感器的行为进行了详细的研究。在最优条件下,此修饰电极对H2O2具有明显的催化作用,电流与H。0:的浓度在6.0×10-7-1.8×10-3mol/L范围内呈现良好的线性关系,检出限达2.0×10-7mol/L。此传感器制作简单,具有较高的灵敏度和良好的稳定性及重现性。
简介:在加热条件下,发现氯化铵可以使季戊四醇单侧修饰的Anderson型铬钼酸盐发生结构变异,Anderson型多酸母体上的季戊四醇配体由正中心位置异构到非正中心位置(季戊四醇配体的一个烷氧基从取代多酸骨架中的μ3-O桥氧原子异构为取代骨架中的μ2-O桥氧原子),得到其χ同分异构体(NH4)3{χ-[Cr(OH)3Mo6O(18)(OCH2)3CCH2OH]},并通过电喷雾质谱ESI、红外光谱IR和单晶X射线衍射的方法确定了该化合物的结构.晶体测定及分析结果表明,该化合物属单斜晶系,P21/n空间群,晶胞参数a=1.05368(4)nm,b=2.91172(6)nm,c=1.12470(7)nm,α=90°,β=117.45(6)°,γ=90°,Z=4,V=3.0621(3)nm3.
简介:采用密度泛函理论,分别在B3LYP/6-311++g(d,p)和B3LYP/aug-cc-PVTZ理论水平下,系统研究了无水和水催化的OH自由基与HBrO反应,即HBrO+OH和HBrO+OH+H_2O2个反应的微观反应机理,给出了所有可能发生的反应路径,并指出能量最低的反应通道.对于没有水参与的反应,由于OH自由基进攻HBrO方式不同,存在顺式方向和反式方向2种进攻方式的反应路径;当有一分子水参与反应时,考虑HBrOH_2O复合物与OH自由基的反应和HBrO与H_2OOH复合物2种反应情况,共发现4条不同的反应路径.这2种反应的所有路径均是在OH自由基提取氢之前以氢键复合物形式存在,反应过程均为无势垒加合过程,总反应为放热反应.水对目标反应起催化作用,有效地降低了反应的势垒,可以加快OH自由基和HBrO的消耗速度.