简介:描述了一种采用HPGe探测器γ能谱法无损测量核材料铀样品并计算样品的生产(纯化)年龄与同位素丰度的方法。该方法不需要其他任何标准源或参考源,对样品的形态(固体、液体)和形状没有限制,由铀样品自身所含多γ射线核素的γ能峰来刻度相对峰效率曲线,由能峰计数率、相对效率、γ射线发射概率等参数确定铀同位素的比值,由^234U与其衰变子体214Bi的活度比值计算其生产年龄。对一个铀总量约5g、^235U浓缩度约90%的24mL液体铀样品,用两套HPGe探测器分别测量不同能区范围的γ能谱:在平面型探测系统获取的低能区能谱中,用^235U的γ能峰刻度相对峰效率曲线,计算了^234U、^228Th(232U子体)与235U的相对比值;在同轴型探测系统获取的高能区能谱中,用^228Th及其子体的γ能峰刻度相对峰效率曲线,计算^238U、^214Bi与^228Th的相对比值,综合计算得到铀样品生产年龄(-32a)及铀同位素丰度,并与样品经过放化分离后,质谱法测量得到的结果进行了比较,生产年龄与丰度比偏差均在5%以内符合。
简介:将电路模拟软件PSpice中的电压控制开关模型和自击穿开关模型结合,提出了一种FLTD模块气体开关同步放电分散性的电路模拟方法,利用此方法构建了14支路并联FLTD模块电路模型,电路模拟结果与实验结果吻合,验证了该方法的有效性。针对采用80nF储能电容设计的20支路并联FLTD模块,利用该方法分析了模块支路开关放电分散性对输出电流峰值和前沿的影响。结果表明,输出电流峰值随着开关分散性的增加而减小,输出电流前沿随着开关分散性的增加而增加。与理想状态相比,当开关抖动为5ns时,电流峰值降低3%,电流上升沿增加约10%,电流峰值和上升沿的标准偏差分别为14kA和1ns;当开关抖动10ns时,电流峰值降低10%,上升沿增加约20%,电流峰值和上升沿的标准偏差分别为24kA和2ns。气体火花开关抖动小于5ns时,对模块输出影响较小,可满足模块同步放电要求。