简介:讨论了一类混合单调算子的耦合不动点定理,并获得了最大最小耦合不动点.作为应用,讨论了Banach空间中含有不连续项的混合单调Volterra型积分方程耦合拟解的存在性问题.
简介:本文首先利用共轭梯度及矩阵性质,构造迭代算法,并证明算法的收敛性,同时对该算法当方程相容时收敛到问题的极小范数解进行证明.然后,对该算法进行细微修改,应用于相应的最佳逼近问题.最后给出相关的数值实例,验证算法的有效性.
简介:讨论了形如∫a^a+h(x-a)βf(x)dx的Gauss-Jacobi求积公式,当积分区间长度趋向于零时,确定了求积公式的余项中介点η的渐近性,并给出了校正公式,比原公式提高了两次代数精度.此外,本文的结论包含了文[3]的结果.
简介:本文运用Liapunov函数方法,研究了一类四阶非线性微分方程的周期解,得到了存在唯一渐近稳定的周期解的充分条件。
简介:第一类弱奇异核Fredholm积分方程由于奇异及本质的不适定性,给求解带来很大难度.本文首先利用克雷斯变换将方程转化,并对转化后的方程进行高斯一勒让德离散,得到一离散不适定的线性方程组,结合正则化方法对该类问题进行数值求解.最后给出了数值模拟,验证了本文方法的可行性及有效性.
简介:基于解的充分必要条件,提出一类广义变分不等式问题的神经网络模型.通过构造Lyapunov函数,在适当的条件下证明了新模型是Lyapunov稳定的,并且全局收敛和指数收敛于原问题的解.数值试验表明,该神经网络模型是有效的和可行的.
简介:引入一类Lupas-Baskakov积分算子,给出它对有界变差函数的点态逼近度,并指出精确的逼近阶。