简介:在连续Gompertz模型基础上,导出了差分形式的Gompertz模型。通过对肿瘤生长数据的模拟,验证了差分形式的Gompertz模型对连续Gompertz模型具有良好的逼近效果;进一步,对其稳定性进行了研究,讨论了模型参数对平衡点稳定性的影响;最后,研究了一类基于差分形式的Gompertz模型的非线性动力系统的长期行为,数值模拟表明差分形式的Gompertz模型的长期行为对模型参数较为敏感。
简介:在离散时间场合和不存在交易成本假设下,提出了期权定价的平均自融资极小方差规避策略,得到了含有残差风险的两值看涨期权价格满足的偏微分方程和相应的两值期权定价公式。通过用数值分析来比较新的期权定价模型与经典的期权定价模型,发现投资者的风险偏好和标度对期权定价有重要影响。由此说明,考虑残差风险对两值期权定价研究具有重要的理论和实际意义。