学科分类
/ 22
428 个结果
  • 简介:(三)数列、极限、数学归纳遂宁中学奉文清邓易修学习导引:数列是中学数学的一项重要内容,它不仅有着广泛的实际应用,而且是对学生进行计算、推理等基本训练和综合训练的重要题材,并为进一步学习高等数学打下坚实的基础。等差数列与等比数列的定义、通项公式、前n...

  • 标签: 等差数列 数学归纳法 等比数列 数列极限 通项公式 自然数
  • 简介:数学情境是从事数学活动的环境,产生数学行为的条件从它提供的信息,通过联想、想象和反思,发现数量关系与空间形式的内在联系,进而提出数学问题,并探寻解决问题的策略和方法.良好的数学情境还伴随着一种积极的情感体验,其表现为对新知识的渴求,对客观世界的探索欲望,对数学的热爱等.

  • 标签: 数学活动 问题情境 数学情境 数学行为 空间形式 数量关系
  • 简介:“几何学的简洁美,正是几何学之所以完美的核心所在”(牛顿语).在立体几何教学中,如能很好地使用多媒体,对培养学生的空间想象能力,以及帮助学生理解和牢固掌握知识,有着很大的作用.但在什么情况下使用多媒体最恰当?应当如何使用?这两个问题是值得我们认真探讨的,本文结合自己的实践探索谈谈看法.

  • 标签: 立体几何教学 多媒体 应用 空间想象能力 几何学 简洁美
  • 简介:在Hausdorff拓扑线性空间X及其超1维线性子空间V中,提出并证明了代数连续映象F:X→V^#的一个零定理,作为应用,讨论了一类广义保号的散度型二阶椭圆方程和一类退化的Fichera-Keldys型二阶抛物方程的弱解存在的问题,推广和改进了现有的结论和现有的证法。

  • 标签: 锐角原理 抛物型方程 代数连续映象 椭圆型方程 零点定理 弱解
  • 简介:建立了涉及n维单形内的两个几何不等式,作为其特例得到n维Euler不等式的推广.

  • 标签: 单形 内点 距离 不等式
  • 简介:讨论了Banach空间X上两个算子T,S拟相似时,近似谱σa(T)的每一个连通分支与σa(S)以及σs(S)的相交关系.证明了σa(T)的每一个连通分支与σs(S)的交非空,并且给出了σa(T)的连通分支与σa(S)交非空的充要条件.

  • 标签: 拟相似算子 近似点谱 连通分支 BANACH空间
  • 简介:运用Banach极限的技巧将收敛控制条件进一步放宽,去掉了∑x=1^∞|αn+1-an|〈∞条件,在相对山弱的条件Txn+1-Txn→0,n→∞下证明了一个强收敛定理,改进了Wittmann的结果.

  • 标签: 非扩展非自映像 BANACH极限 不动点
  • 简介:对于有限群G的每一主因子H/K来说,若G的子群L满足LH=LK或者L∩H=L∩K,则称L是G的CAP-子群.本文通过假设G的每个非循环Sylow子群P有一个子群D使得1〈|D|〈|P|,且P的所有阶为|D|和2|D|(若P是非交换2-群且|P∶D|〉2)的子群H是G的CAP-子群,得到G为p-幂零群的一个结果.

  • 标签: CAP-子群 P-幂零群 超可解群 饱和群系
  • 简介:众所周知,幂函数xσ的导数是幂函数axσ-1,而幂函数xσ的原函数(不定积分)一般也是幂函数(1/(a+1))xσ+1。只有当a=-1时例外,是对数函数。为什么有这样的变异?现作如下讨论:

  • 标签: 幂函数 泰勒展开式 泰勒级数展开
  • 简介:借助Rouché定理、留数定理及渐近分析的方法,给出了整函数f(z)=zmsinz-a(0≠a热∈R,m热∈Z+)零的渐近公式及渐近迹.这种方法也适用于其它整函数的零估计.

  • 标签: 解析函数 零点 渐近公式
  • 简介:本文研究了k-非常极凸空间的问题,利用k维体积定义了k-非常极凸空间,使用k-非常极凸的概念,得到了k-非常极凸空间的性质和一些特征,推广了k-drop凸空间.

  • 标签: κ维体积 κ-非常极凸 κ-drop凸
  • 简介:对于D上的Carleson测度μ而言,本文研究在加权Bergman空间Aα~2(D)上具有符号μ的Toeplitz算子Tμ的一些特殊的性质.近几年,在加权Bergman空间Aα~2(D)上的Toeplitz算子的有界性和紧性已经被广泛研究.为了了解Toeplitz算子Tμ的一些其他性质,本文需要估算出单位圆盘的加权Bergman空间上Toeplitz算子的本性范数的界限.

  • 标签: TOEPLITZ算子 本性范数 加权BERGMAN空间
  • 简介:利用连续线性泛函满足的某些条件,给出了关于m-增生、奇算子的一些映射结果,这些结果是对已有文献中相应结果的改进.其中第二节中考虑了算子的奇性,运用Borsuk定理得出了m一增生、奇算子的映射定理;在第三节中讨论了凝聚映射的相应结果.

  • 标签: M-增生算子 奇算子 凝聚映射 紧映射 度理论