简介:带柔性时间窗的开放式车辆路径问题(OpeningVehicleRoutingProblemwithFlexibleTimewin—dows,OVRPFTW)对物流配送中的延迟或者提早具有一定程度的容忍.本文首先建立了OVRPFTW的数学模型,然后分别将Sine映射,Chebyshev映射和Logistic映射引入基本蚁群算法,构建了三种混沌蚁群算法,并将其用于求解OVRPFTW.算倒测试表明:Sine映射和Chebyshev映射能够明显地改进基本蚁群算法的优化性能,基于Sine映射和Chebyshev映射的混沌蚁群算法的求解性能优于基本蚁群算法和基于Logistic映射的混沌蚁群算法.
简介:目前,随着电动汽车的普及,物流企业逐渐重视电动汽车的应用。本文考虑到电动汽车在实际应用中的行驶里程、充电耗时以及配送时间等因素,研究含时间窗的电动汽车车辆路径问题,建立了相应的混合整数规划模型,然后改进分支定价算法以求得其最优解。改进的分支定价算法首先根据Dantzig-Wolfe分解原理将原问题分解为基于路径的主问题(MP)和求最短路径的子问题,然后用列生成和动态规划算法在主问题和子问题之间进行迭代以求得主问题线性松弛后的最优解,最后采用基于弧的分支策略求得其整数解。通过用改进的Solomon算例的实验数据,与CPLEX比较验证了模型和算法结果的准确性,并对该问题进行了灵敏度分析,证明了本文提出的算法具有一定的应用价值。
简介:惯导固有原因使得载体长时间航行累积大量误差.可通过重力梯度量测与惯导组合导航方法来修正导航误差.先对重力梯度仪与惯导组合导航原理进行阐述,提出重力梯度仪辅助INS(GAINS)的系统框架图,对导航用重力梯度图和重力梯度仪进行分析,设定组合量测方程.然后根据状态空间方程的特点,提出使用边缘Cubature粒子滤波(CPF)进行融合估值.通过理论方法证明其对方差的减小,同时给出算法流程.相同条件下与已有APO-PF算法仿真进行经纬度RMSE结果对比,表明该算法估值精度更高;并用CEP对导航误差研究,得到在性能较低的惯导条件下、在梯度仪1E2和10E2噪声下4h的CEP数值分别为0.044nmile和0.072nmile的结果.最后对状态方程简化,定性分析出其余状态量的估值效果.
简介:从模式识别的角度分析了搜索模式下水下运载体的重力匹配问题,利用模式识别神经网络实现重力匹配定位。在重力图匹配时,以惯性导航仪指示位置为中心规划真实位置的网格点搜索范围,从参考重力图上提取相应一系列的重力数据,与对应网格点的位置一起定义成多个模式类,构造相应的模式识别概率神经网络,运用该神经网络将实时重力测量数据识别到某个模式类,对比模式类的定义确定载体位置。在实测重力图上对重力辅助惯性导航系统进行了计算机仿真研究。结果表明,在重力场特征显著区域该重力匹配算法能够有效减小厄特弗斯效应的影响,其导航系统定位误差小于一个重力图网格,匹配率在80%以上,匹配效果优于一般的相关匹配算法。
简介:借鉴无约束优化问题的BFGS信赖域算法,建立了非线性一般约束优化问题的BFGS信赖域算法,并证明了算法的全局收敛性.数值实验表明,算法是有效的.