简介:摘要利用2008年1月1日至2012年12月31日逐日NCEP再分析资料(1×10)和大同地区地面常规观测资料,选取相邻两天的气象因子差值作为预报因子,相邻两天的日最高/最低气温的差值作为目标因子,分站点分月构建三层结构的日最高/最低BP神经网络模型,并应用独立样本进行模型检验,结果表明,该模型输出结果与实况拟合较好,且其对明显的升降温过程能够准确预报。在对ECMWF数值预报产品释用基础上,针对大同站2012年1月最高气温进行了24h、48h和72h模拟预测,结果显示,该BP神经网络预报模型各时效预报准确率TS评分均高于中央气象台MOS预报。
简介:基于社群经济高速发展的时代背景下,首次将离散型Hopfield神经网络应用到社群经济影响因素问题上。首先建立社群经济因素体系,通过ISM方法得出各因素间的层次结构关系。然后利用离散型Hopfield神经网络构建自媒体价值评估模型,通过MATLAB设计一个不断提高的理想评价指标来区分同一等级中的不同样本,最后,通过算例得出价值最高的自媒体。结果表明:注重提高特色化社群活动、用户参与决策、平台共享、社群文化构建这4要素更有利于提高自媒体价值,并提出了相应的对策建议,为企业及自媒体人提供借鉴价值。
简介:摘要:天然气管道的输送介质是易燃、易爆的物质,含有多种杂质,对管道的腐蚀,使管道在内外腐蚀的条件下非常复杂,管道的缺陷使问题更加严重。一旦发生爆炸、泄漏、停车等事故,将造成严重后果。近年来,管道泄漏事故时有发生,对环境造成了极大的危害,因此预测管道的腐蚀速率具有重要的意义。本文将以 VMD-BP神经网络应用于天然气管道工况的检测。以天然气管道里程、高差、管道倾角、压力、雷诺数为输入参数,以管道最大平均腐蚀速率为输出参数,建立了天然气管道内腐蚀速率预测模型。结果表明 VMD-BP神经网络具有较好的拟合精度和预测效果,基于该模型的腐蚀速率预测更加可靠。结果表明, VMD-BP神经网络算法收敛速度快,预测精度高,能有效检测天然气管道,满足实际应用的要求。