简介:通过配置实时数据和函数到片内SRAM中执行,可以有效提高程序执行效率,降低功耗。然而在嵌入式Linux系统下,由于禁止用户空间程序控制或访问处理器内存的映射和分配方式,这一资源通常得不到有效利用。本文以MP3解码器为例,在μClinux-2.6操作系统下通过使用片内SRAM提高代码执行效率,并最终在Freescale公司的ColdFire5329嵌入式平台上成功验证了该方案。
简介:为了协调高速铁道车辆的运动稳定性与曲线通过性能之间的矛盾,本文采用多目标优化方法对一种高速铁道车辆的关键悬挂参数进行了优化处理.采用多体动力学技术建立了某型高速铁道车辆62个自由度的动力学模型,模型考虑了轮轨接触几何非线性、轮轨蠕滑非线性和阻尼非线性等.采用ADAMS—Matlab联合仿真对车辆悬挂系统进行参数化改造,使弹簧刚度和阻尼系数均可调.采用基于遗传算法的多目标优化方法对悬挂参数进行优化,使车辆模型能同时满足3种动力学指标.对比优化前后模型的动力学性能可以发现:模型的运动稳定性和曲线通过性能得到显著提高,虽然运行平稳性有小幅降低,但仍能保持在优良的工作状态.
简介:正如傅里叶变换采用正弦基,单频信号能够在频域形成峰值,分数阶Fourier变换采用线性调频基,线性调频(LFM)信号能够在分数阶Fourier域上实现聚焦,利用此聚焦性通过搜索峰值可实现LFM信号检测和参数估计.通常采用步进式搜索方法,效率低下.为了克服该缺点,通过对分数阶Fourier域优化问题本质的研究,将混沌优化算法引入到分数阶Fourier域极值搜索中.仿真结果表明:本文的方法优于传统的步进式搜索法.
简介:随着人工智能的发展,数字识别技术也得到了关注并通过各种算法提高了识别准确率。数字识别在安防、交通、邮政等领域发挥越来越重要的作用,是智能城市不可或缺的一环。通过采用包含隐含层的BP神经网络对数字识别进行仿真。首先介绍Mnist数据集、人工神经元模型、激活函数、BP算法等相关概念,详细描述了BP神经网络的原理,并通过实例进行BP网络设计。同时提出了6种优化方式,分别是初始化权值、设置Dropout、选取不同的激活函数、选取不同的代价函数、采用不同优化器、设置学习率。结果表明BP网络在数字识别方面具有实际应用价值,并能通过各种优化方式提高识别精度。