简介:乳酸菌培养是乳酸菌应用的关键技术。传统的乳酸菌培养采用游离细胞悬浮培养,生产效率低,细胞密度低,细胞分离难,成本高。微囊化乳酸菌避免了传统悬浮发酵剂的缺点和限制,细胞密度可超过10cfu/g,从培养基中分离细胞不需经过超滤或冷冻离心,而用普通的离心或过滤就可进行,因此大大降低了生产成本。另外,微囊化细胞技术可以防止氧对双歧杆菌的伤害,防止噬菌体的感染,以及在冷冻过程中有很好的保护作用,用于浓缩乳酸菌生产效果比较显著。本文主要是从囊内细胞初始浓度的影响、壳聚糖包膜后细胞的定时更换培养基连续培养过程中囊内细胞的增长、增殖培养基的筛选等方面对囊内乳酸菌的浓缩培养进行了研究。
简介:目的:探讨虾青素对脐静脉内皮细胞(HUVEC)的抗氧化作用。方法:体外培养HUVEC,分为空白组、模型组(H2O22mmol/L)、虾青素+H2O2组(0.1,1,10μmol/L虾青素预处理48h后,加2mmol/LH2O2处理1h)。用MTT法检测细胞的存活率,DCFH-DA法检测细胞内ROS水平,JC-1法检测线粒体膜电位,AnnexinV-FITC流式细胞术和DAPI法检测细胞凋亡,westernblot法检测Caspase-3和p53蛋白表达。结果:与空白组相比,H2O2能明显造成HUVEC细胞的凋亡和坏死。虾青素可以降低H2O2引起的细胞死亡,减少活性氧的产生,使线粒体膜电位升高,凋亡率减少,Caspase-3和p53的表达下调。结论:虾青素对H2O2引起的HUVEC细胞死亡具有保护作用,其机制可能与保护线粒体功能有关。
简介:为研究苦瓜碱提多糖(AEMP)调节胰岛素抵抗的作用途径,采用0.25mmol/L棕榈酸诱导HepG2细胞建立胰岛素抵抗细胞模型,并测定AEMP和二甲双胍对胰岛素抵抗细胞葡萄糖消耗量、糖原、甘油三酯(TG)及胰岛素抵抗信号通路相关基因mRNA表达水平的影响。结果表明,250,500,750μg/mLAEMP均可显著增加胰岛素抵抗细胞的葡萄糖消耗量(从78.58%分别增至93.31%、94.57%和97.07%);750μg/mLAEMP能显著增加糖原含量(从70.78%增至95.51%),降低TG含量(从132.97%降至115.93%);AEMP还可显著提高胰岛素抵抗细胞中PI3K(磷脂酰肌醇-3-激酶)、AKT(蛋白激酶B)和PGC-1α(过氧化物酶体增殖活化受体γ共激活因子-1α)mRNA的表达水平,降低PEPCK(磷酸烯醇式丙酮酸羧激酶)mRNA的表达水平。AEMP主要通过激活胰岛素抵抗细胞的PI3K-AKT和PGC-1α信号通路改善胰岛素抵抗;而二甲双胍则主要通过激活AMPK-ACC2(腺苷酸活化蛋白激酶-乙酰辅酶A羟化酶2)和PGC-1α信号通路,调节胰岛素抵抗细胞的糖脂代谢,二者的作用途径有所不同。
简介:目的:研究鱿鱼墨多肽酸法提取工艺及不同浓度鱿鱼墨多肽对DU-145和PC-3细胞的增殖抑制和诱导凋亡作用。方法:以料液比、加酸量、酸解时间和酸解温度为因素.以酸解液的氨基氮含量为指标.通过正交试验确定提取鱿鱼墨多肽的酸解条件。采用CCK-8法检测其对DU-145和PC-3的生长抑制作用。采用AnnexinV—FITC/PI双标记流式细胞术检测和A0厄B双染法,观察鱿鱼墨多肽对DU-145和PC-3细胞的早期凋亡情况。结果:酸法提取鱿鱼墨多肽最佳组合为0.02mol/L盐酸、酸提料液比1:1、酸解时间2h、酸解温度35℃:鱿鱼墨多肽对DU-145和PC-3细胞有增殖抑制作用,能诱导DU-145和PC-3细胞凋亡。结论:鱿鱼墨多肽能抑制DU-145和PC-3细胞增殖,并诱导其细胞凋亡。
简介:丙烯酰胺是食品热加工过程中形成的一种内源性化学污染物,能引起细胞毒性。矢车菊素-3-葡萄糖苷作为一种果蔬中广泛存在的花色苷,具有显著的抗氧化活性。目前应用花色苷进行AA细胞毒性的干预尚无系统性研究。为了筛选适用于AA细胞毒性干预的细胞模型,对体外培养的HepG2、L02、Caco-2、BHK-21及MDA-MB-231等细胞,通过不同浓度AA和Cy-3-glu培养,采用结晶紫染色法测定不同时间的细胞存活率,最终确定AA最适的作用时间为24h,适宜作用浓度分别为2.5mmol/L和5.0mmol/L;Cy-3-glu的最适预处理时间为4h。筛选出适合Cy-3-glu干预的AA诱导的细胞模型为MDA-MB-231细胞。通过Cy-3-glu抑制细胞内活性氧生成和谷胱甘肽的降低并验证,10~100μmol/LCy-3-glu预处理表现出显著的AA毒性的保护作用,为毒性干预研究提供模型基础。
简介:以海参为原料,研究海参蛋白肽的抗氧化性以及对H2O2诱导RAW264.7巨噬细胞氧化损伤的保护效果和作用机制。以清除羟自由基(·OH)能力、Fe2+螯合能力和Fe3+还原能力为指标,评价海参蛋白肽的体外抗氧化活性。以H2O2刺激RAW264.7巨噬细胞建立氧化损伤细胞模型,采用2′,7′-二氯荧光黄双乙酸盐(DCFH-DA)荧光探针法测定细胞活性氧(ROS)水平,四甲基偶氮唑盐(MTT)法测定细胞活力,实时荧光定量PCR测定细胞血红素氧合酶-1(HO-1)mRNA表达水平。结果表明,海参蛋白肽能够清除·OH,具有Fe2+螯合能力和Fe3+还原能力,海参蛋白肽的这种体外抗氧化能力呈现浓度依赖效应。海参蛋白肽显著降低氧化损伤RAW264.7巨噬细胞ROS水平和提高氧化损伤细胞活力(P〈0.05)。而且,海参蛋白肽显著提高巨噬细胞内HO-1mRNA表达(P〈0.05),HO-1抑制剂锌原卟啉IX(ZnPPIX)部分逆转海参蛋白肽对氧化损伤巨噬细胞活力的促进作用。这些结果说明,海参蛋白肽通过上调RAW264.7巨噬细胞HO-1mRNA表达水平,发挥对巨噬细胞氧化损伤的保护作用。
简介:以植物乳杆菌CCFM8661及其酸耐受突变株LPV-30、LPV-48为研究对象,通过考察酸胁迫对其生理应激反应的影响而探索其可能的耐酸机制。研究结果表明:酸胁迫引起H^+-ATPase活性提高,胞内ATP含量降低,植物乳杆菌利用H^+-ATPase,通过消耗胞内ATP,将胞内H^+排出,从而保持胞内pH的动态平衡。与原始菌株相比,突变菌株都保持了较高的H^+-ATPase活性和胞内ATP水平。细胞膜脂肪酸分析表明:酸胁迫引起总饱和脂肪酸含量的减少,不饱和度和单不饱和脂肪酸的含量增加,并且突变菌株保持较高的饱和脂肪酸含量。本研究结果有助于了解植物乳杆菌的酸胁迫抗性机制。
简介:探究纳豆菌制剂(BNPr)对SPF小鼠免疫功能及其细胞因子分泌的影响。选取体质健康小鼠128只,随机分为8组:空白对照组C,调节组R共4组,预防组P共2组,模型组M。灌胃30d后测定免疫指标及其细胞因子分泌变化情况。结果表明:与模型组相比,BNPr调节组脾脏和胸腺指数极显著升高(P〈0.01),iNOS活力和小鼠血清中的白蛋白、球蛋白和白球比的值极显著上升(P〈0.01),BNPr调节组极显著增加血清中IL-2,IL-10,TNF-α,IFN-γ的分泌量(P〈0.01)。试验组的小鼠血清溶血素水平较对照组极显著升高(P〈0.01)。BNPr显著增强小鼠腹腔巨噬细胞吞噬作用(P〈0.05)。与空白对照组比较,BNPr预防组的脾脏指数与正常水平无显著差异(P〉0.05)。随着制剂的浓度的升高,吞噬百分率和吞噬指数都不断升高。高剂量BNPr调节组显著增加了IL-2的释放(P〈0.05),中剂量BNPr调节组能调节TNF-α水平至正常水平。中剂量BNPr预防组IL-10的分泌量极显著减少(P〈0.01),白蛋白和球蛋白的含量升高。结论:BNPr具有免疫增强作用和调节细胞因子分泌的作用。
简介:通过H2O2诱导人脐静脉内皮细胞(ECV-304)损伤,建立细胞氧化损伤模型。研究丝胶抗氧化肽段SP2、SP3低、中、高质量浓度(50,100,200μg/mL)对细胞免受损伤的保护作用。研究结果表明:SP2和SP3(100,200μg/mL)处理组显著提高了细胞中总抗氧化能力(P〈0.05),SOD,CAT和GSH-Px酶水平(P〈0.05)以及细胞的NO水平(P〈0.05);显著降低了细胞中MDA水平(P〈0.05)。SP2、SP3肽段对H2O2诱导人脐静脉内皮细胞(ECV-304)的损伤有很好的保护作用,存在剂量依赖关系。本研究为开发丝胶抗氧化肽功能产品提供了理论依据,为合理开发和利用丝胶提供了新的途径。
简介:目的:观察不同形态硒(L-硒甲基硒代半胱氨酸、亚硒酸钠、富硒酵母)、维生素E、紫胡萝卜提取物(主要成分为花青素)单独和联合用药对H2O2诱导H9c2细胞损伤的保护作用,并探讨其作用机制。方法:将H9c2细胞随机分为11组,即①空白对照组,②H2O2模型组,③L-硒甲基硒代半胱氨酸组(SeMSC),④亚硒酸钠组(SS),⑤富硒酵母组(SEY),⑥维生素E组(VE),⑦紫胡萝卜提取物组(Ant),⑧VE+Ant联用组,⑨SeMSC+VE+Ant联用组,⑩SS+VE+Ant联用组,(11)SEY+VE+Ant联用组。经不同样品组干预处理后,通过H2O2诱导细胞氧化损伤,检测各组H9c2细胞的存活率,脂质氧化终产物丙二醛(MDA)含量,超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-Px)活力。结果:与模型组相比,不同形态硒、维生素E、紫胡萝卜提取物单独和联合用药组H9c2细胞的存活率明显增加。同时,细胞内MDA的含量降低,SOD、CAT、GSH-Px的抗氧化活力增强,联合用药组的效果优于单独用药组。结论:不同形态硒(L-硒甲基硒代半胱氨酸、亚硒酸钠、富硒酵母)、维生素E、紫胡萝卜提取物均可保护由H2O2诱导引起的H9c2细胞氧化损伤,提高心肌细胞抗氧化能力,联合用药组的效果优于单独用药组,具有明显的抗氧化协同作用。