学科分类
/ 1
10 个结果
  • 简介:Gauss原理是分析力学中的一个微分变分原理,它在理论上简单,应用上有优势,而且适用于双面理想完整系统和非完整系统.本文对这个原理的形成和发展给出一些史料,并提出一些看法.

  • 标签: 分析力学 Gauss原理 史料
  • 简介:线弹性静力学中有最小势能原理和最小余能原理,但只适用于物体或结构在给定约束条件下处于稳定平衡状态的情况,而在一般情况下动力学问题不可能存在稳定平衡状态,因此在动力学领域中是否存在最小势能原理值得认真考虑.本文对动力学问题中存在最小势能原理的可能性进行了探讨,并以摆脱了"平衡态"和"稳定态"的限制的最小功耗原理为理论基础,导出了线弹性动力学中的最小势能原理和最小余能原理.给出了计算实例,结果正确.因此在线弹性动力学中存在瞬时意义下的最小势能原理和最小余能原理.但其含义与静力学中的最小势能原理和最小余能原理并不相同.其主要区别在于:动力学中的原理适用于不稳定过程之任一瞬时,其"最小"是指"当时(即该瞬时)所有可能值的最小".而静力学中的最小势能原理则只适用于稳定平衡状态,其"最小"是指系统从不稳定最后达到稳定平衡的整个过程中所有"真实值中的最小".即前者是"当时的最小",后者则是"全过程中的最小".这两类变分原理可成为线弹性动力学中各种变分直接解法的理论基础.

  • 标签: 最小势能原理 最小余能原理 弹性动力学 动力学问题 平衡状态 理论基础
  • 简介:研究了本质线性非完整系统的Hamilton原理,分别应用与不应用Appell—Chetaev条件证明了本质线性非完整系统Hamilton变分泛函取驻值的充分必要条件.结果表明,在本质线性非完整系统中,Hamilton作用量是稳定的作用量,与完整系统的Hamilton原理具有相同的形式与本质;而且由Hamilton原理得到的运动方程不会导致任何力学与数学上的矛盾.最后给出了Hamilton原理向本质非线性非完整系统推广时产生数学与力学上不合理的根本原因。

  • 标签: HAMILTON原理 非完整系统 变分原理 分析力学
  • 简介:发展型偏微分方程混和有限元的求解往往需要变动的维数,不符合传递辛矩阵群固定维数的限制.本文按变分法的进一步发展的思路,推导了运用虚功原理解决不同维数传递辛矩阵群连接的原理.数值例题表明了方法的有效性.

  • 标签: 发展型偏微分方程 混和有限元积分 传递辛矩阵 不同维数的连接
  • 简介:分别建立了广义非保守系统的Hamilton-Tabarrok—Leech正则方程和Raitzin—Tabarrok—Leech正则方程,给出了广义非保守系统的三种新型最小作用量原理:Lagrange—Tabarrok—Leech最小作用量原理.Raitzin—Tabarrok—Leech最小作用量原理和Lagrange—Raitzin—Tabarrok—Leech最小作用量原理,并举例说明这些原理的应用.

  • 标签: 广义经典力学 非保守系统 最小作用量原理
  • 简介:提出了一个新的加速增长的加权网络模型.与以前的边固定模型或边局部分配模型相比,该模型允许流被全局更新,并给出度、边、与点强度分别服从幂律分布.特别地,这些幂律指数是非普适的而且依赖于两个网络参数.该模型还指出点强度高度依赖于度并且它们之间服从幂律关系,这与许多的实证研究结果相符.数字仿真验证了理论预测的正确性.

  • 标签: 加权演化网络 边权全局演化 加速增长的网络 幂律分布
  • 简介:本文提出了一种改进的注意力选择模型,在这个模型中,周边神经元代表初级视觉皮层的神经元,中心神经元代表更高级视觉皮层中的神经元.生理实验发现方向选择性是初级视觉皮层神经元的重要特性之一,所以模型除了考虑外部刺激的强度,也考虑了初级视觉皮层中的神经元的方向选择性.仿真结果显示改进后的模型能够选择具有不同方向选择性的目标,并且能从一个目标转移到另一个目标.和原模型相比,改进后的模型更符合生理背景.该模型的动力学分析结果,对于理解视觉神经系统的编码有一定的帮助.

  • 标签: 方向选择性 注意力选择模型 神经网络 非线性动力学
  • 简介:根据古典阴阳互补和现代对偶互补的基本思想,通过罗恩早已提出的一条简单而统一的新途径,系统地建立了弹性膜结构动力学的各类非传统Hamilton型变分原理.这种新的非传统Hamilton型变分原理能反映这种动力学初值一边值问题的全部特征.文中首先给出膜结构动力学的广义虚功原理的表式,然后从该式出发,不仅能得到膜结构动力学的虚功原理,而且通过所给出的一系列广义Legendre变换,还能系统地成对导出弹性膜结构动力学的5类变量(Pα,Pβ,pγ,Vα,Vβ,Vγ,Nα,Nβ,Sαβ,εα,εβ,εαβ,u,v,w)、4类变量(Pα,Pβ,pγ,Vα,Vβ,Vγ,Nα,Nβ,Sαβ,εα,εβ,εαβ,u,v,w)、3类变量(Nα,Nβ,Sαβ,εα,εβ,εαβ,u,v,w)和2类变量(Nα,Nβ,Sαβ,u,v,w)非传统Hamilton型变分原理的互补泛函、以及相空间(Pα,Pβ,pγ,u,v,w)非传统Hamilton型变分原理的泛函与1类变量(u,v,w)非传统Hamilton型变分原理势能形式的泛函.同时,通过这条新途径还能清楚地阐明这些原理的内在联系.

  • 标签: 非传统Hamilton型变分原理 膜结构 几何非线性 弹性动力学 对偶互补 初值-边值 问题 相空间
  • 简介:通过引入不同的对偶变量,将粘性流体的扰动问题化为具有良好结构特性的可解耦Hamilton系统.利用可解耦Hamilton系统微分形式与积分形式的等价性,导出了粘性流体扰动问题的Hamilton混合能变分原理,并建立了本征函数系之间的双正交关系.

  • 标签: 哈密顿体系 粘性流体 变分原理 双正交关系
  • 简介:根据古典阴阳互补和现代对偶互补的基本思想,通过罗恩提出的一条简单而统一的新途径,系统地建立了平面框架结构折线型弹塑性动力学的各类非传统Hamilton型变分原理.文中首先给出平面框架结构折线型弹塑性动力学的广义虚功原理的表式,然后从该式出发,不仅能得到平面框架结构折线型弹塑性动力学的虚功原理,而且通过所给出的广义Legendre变换,还能系统地成对导出平面框架结构折线型弹塑性动力学的5类变量分原理的互补泛函,以及1类变量和相空间非传统Hamilton型变分原理的泛函.同时,通过这条新途径还能清楚地阐明这些原理的内在联系.

  • 标签: 框架结构 弹塑性动力学 相空间 非传统HAMILTON型变分原理 初值-边值问题