简介:系统综述了自19世纪开始至今常用的统计相关性的方法,例如Pearson和Spearman相关系数,CorGc和CovGc相关性及距离相关性方法。重点介绍了2011年提出的MIC方法以及由此引发的毁誉参半的大量评述,旨在揭示这一热点领域的研究面貌。该领域不仅受到统计学家的关注,而且受到了分析大样本和异质数据的应用研究领域的学者们的追捧,例如基因组生物学家和网络信息研究者。这些研究者期望在众多已有方法的理解和剖析中更恰当地付诸应用,并提出新的应用问题来推动新的分析方法的创造。
简介:基于Lyapunov-Schmidt方法求出给定方程的分岐方程,Newton迭代得到其在分岐点附近的近似非平凡解枝,得到了满意的结果.
简介:聚类分析是研究“物以类聚”的一种现代多元统计分析方法,而且聚类分析方法发展很快,并在经济、管理、地质勘探、天气预报、生物分类、考古学、医学、心理学以及制定国家标准和区域标准等许多方面都取得了很有成效的应用。本文首先重点学习了聚类分析的相关知识,通过对具体实例数据用SPSS软件进行不同种系统聚类法的应用分类,并利用阈值T、散点图和使用统计量确定适合的类的个数,把不同种系统聚类法进行研究和比较。最后得出结论:“给定一个阈值T”这种方法的主观性较强;“观测散点图”这个方法较为直观,效率也许会好于正规聚类方法;“使用统计量”往往更明确。在聚类方法的效果方面,类平均法和离差平方和法的聚类效果相对较好。
简介:证明了转移函数是l∞的一个子空C1上的正的压缩C0半群,其极小生成元恰好是Markov积分算子半群的生成元在C1中的部分;Markov积分算子半群的生成元稠定的充分必要条件是q-矩阵Q一致有界;同时转移函数是Feller-Reuter-Riley的充要条件是Markov积分算子半群的生成元在c0中的部分产生一个强连续半群.最后,在序Banach空间给出了增加的压缩积分算子半群的生成定理.
简介:本文在L^1空间上,研究了种群细胞中一类具总转变规则的Rotenberg模型,讨论了这类模型相应的迁移算子生成正C0半群,并且证明了该正C0半群是不可约的等结果.